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ABSTRACT

In this thesis we explore the theme of automata, measures on spaces of sequences XN

in a finite alphabet X , and their connections. The notion of a finite-state measure (a mea-

sure given by a finite automaton, or equivalently, having a finite number of sections) is in-

troduced, and applied to the problem of studying the images of Markov measures under the

action of tree automorphisms given by automata. Another approach, based on prior work

by Kravchenko, is also applied to this problem to compute the Radon-Nikodym derivative

in the case when the automaton has polynomial growth, and to compute frequencies by

using a lift to (S ×X)N.

The question of when the image of a finite-state measure under the action of a non-

invertible automaton is answered. We also explore when a finite-state measure is Gibbs.

For the second part of the thesis, we introduce the notion of the automatic logarithm,

and a measure associated with it. We compute this measure for certain interesting exam-

ples, in which it turns out to be finite-state.
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1. Introduction

This disseration contains several related projects on the theme of automata and mea-

sures on the spaces of sequences.

Finite automata are objects fundamental to computer science, which have found sur-

prising applications in group theory in pioneering work of Rostislav Grigorchuk, provid-

ing a rich source of counter-examples (particularly, providing an example of a group with

subexponential activity, answering the question of Milnor).

It turns out that a wide and interesting class of measures, called finite-state measures,

can also be defined by finite automata. This class is preserved by the action of invert-

ible finite automata, and contains measures such as Bernoulli, Markov, and k-step Markov

measures. The problem of studying images of measures under the action of automata,

initiated in [1] and [2] and later continued in [3], can thus be reduced to the study of

properties of finite-state measures in the case when the automata are invertible. We exam-

ine when such measures are equivalent to k-step Markov measures, when they are Gibbs,

and establish conditions for the image of a finite-state measure to be finite-state under the

action of non-invertible automata.

Additionally, we extend the approach of [3] to study the images of Markov measures.

This approach involves lifting, and is not equivalent to studying the properties of the finite-

state measure corresponding to the image.

Another application of finite-automata in computer science and group theory is to con-

struct the so-called graphs of action (also known as Schreier graphs, being a particular

case of thereof). The problem of studying the distribution of lengths of chords in the graph

of action of two initial automata on the levels of binary tree gave rise to the automatic

logarithm, a map defined by an automaton that outputs these lengths. The distribution of

1



the lengths of chords is then readily seen as the image of the uniform Bernoulli measure

by the action of the automatic logarithm. The most interesting cases arise when the auto-

matic logarithm is not invertible (the distribution is uniform otherwise), and the resulting

measure is not necessarily finite state. Examples for important automata and either case

are provided.

Finally, we conclude with remarks and open questions related to finite-state measures,

their images, and Schreir graphs of automata.
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2. Preliminaries

2.1 Finite automata and related concepts

2.1.1 Endomorphisms of rooted trees

The finite alphabetX of size d is a finite set of cardinality d. We will use the following

alphabets: the set {0, 1, . . . , d− 1}, and finite subsets X ⊂ [0, 1].

For w - a word in X , |w| denotes its length, and wi denotes the i’th character for

0 ≤ i ≤ |w| − 1. If v is another word (or a character), wv is the concatenation of the two,

so w = w0w1 . . . w|w|−1.

X∗ denotes all finite words in X:

X∗ := {a0 . . . an−1 : ai ∈ X,n ∈ N ∪ {0}}

A d-regular, rooted tree T is a rooted graph with the vertex set V = X∗, root at the

empty word, and the edge set

F = {(w,wa) : w ∈ X∗, a ∈ X}.

An endomorphism of the tree T is a map from T to itself that is also a graph ho-

momorphism (preserves the adjacency relation). An automorphism is an invertible endo-

morphism.

The n’th level Xn of a tree is the set of words of length n. Observe that endomor-

phisms, by definition, preserve levels.

The boundary of the tree T is the set XN of infinite sequences in X:

∂T := {a0a1a2 . . . : ai ∈ X, i ∈ N}

3



∂T is supplied with the Tychonoff product topology that makes it homeomorphic to a

Cantor set.

Let σr denote the operation that deletes the last character of a word: for w ∈ X∗ and

a ∈ X ,

σr(wa) := w.

Remark 2.1.1. ∂T can be obtained as the inverse limit of the direct system of levels {Xn :

n ∈ N} with the projections ψm,n : Xn → Xm given by ψm,n := σn−m
r (i.e., discarding

the last n−m characters).

2.1.2 Mealy and Moore machines

Definition 2.1.2: A Mealy machine, or a finite initial automaton with output, is a

hextuple Aq = (S, q,X, Y, π, λ), with

• X - a finite (input) alphabet;

• Y - a finite (output) alphabet;

• S - a finite set of states;

• q ∈ S - the initial state;

• π : S ×X → S - the transition map

• λ : S ×X → Y - the output map

After specifying the initial state q of the automaton Aq, we often omit it in further

mentions, and simply write A for Aq.

We write πs, λs for restrictions of these functions to the state s, defining πs(x) :=

π(s, x) and λs(x) := λ(s, x).

4



The functions π and λ also act on words in the alphabet X via these recursive defini-

tions (for x ∈ X , w ∈ X∗):

π(s, xw) := π(π(s, x), w);

λ(s, xw) := λ(s, x)λ(π(s, x), w).

In the same way, πs and λs, for s ∈ S, act on words w ∈ X∗. Additionally, we may write

π(w) for πq(w) (and similarly, λ(w) for λq(w)) when q is the initial state.

We write

s0
x1−→
y1

s1
x2−→
y2

. . .
xn−→
yn

sn

when the automaton takes an input string x1x2 . . . xn, outputs y1y2 . . . yn while going

through a sequence of states s0s2 . . . sn. That is, π(si−1, xi = si) and λ(si−1, xi = yi)

for i ∈ 1..n. We call the above a path in the automaton (as it is indeed a path in the

directed graph where the edges are given by the set of states S, the transition function π

providing the incidence matrix, and λ giving edge labels).

An automaton A is invertible if X = Y and λ is injective. To an invertible automaton

A with states s1, . . . , sn, we associate an automaton A−1 with states s−1
1 , . . . , s−1

n defined

as follows:

λ(s−1
i , λ(si, x)) := x;

π(s−1
i , λ(si, x)) := π(si, x).

This is well-defined, and for w ∈ XN, s−1
i ◦ si(w) = si ◦ s−1

i (w) = w. Since the

actions preserve word length, they are isomorphisms of the regular tree where the children

5



of every node are indexed byX . We can now talk about the group of tree automorphisms

generated by the states of A.

We call an automaton A strongly-connected if for every pair of states s, t ∈ S there

exists a path that starts in s and ends in t. A tree automorphism is strongly-connected

whenever its automaton of restrictions is.

We define a stronger notion of connectedness (L-strongly-connectedness) in a later

section, which we use as a sufficient condition for ergodicity of certain measures.

The diagram of an automaton Aq is a labeled graph with the vertex set S, edge set

E = {(s, π(s, x)) : s ∈ S, x ∈ X}, with label x : λ(s, x) on the edge (s, π(s, x)). The

initial state q is marked with an arrow. An example of such diagram for the Lamplighter

automaton L is shown in Figure 2.1a.

a

0|1

b1|0
0|0

1|1

(a) Diagram with output marked on edges
a

0

b

1
0

1

(b) Diagram with element of the symmetric
group on vertices

Figure 2.1: Two ways to draw the Lamplighter automaton

An automaton A is invertible if λs is invertible for all s ∈ S (that is, if λs ∈ S(X),

where S(X) is the symmetric group on X). The endomorphism g given by an invertible

automaton A is invertible, and the automaton for g−1 (which we denote as A−1) can be

constructed from the diagram of A by flipping the input and output on the edges.

In the case when an automaton is invertible, we can draw the diagram of the automaton

without specifying its output on the arrows. Instead, the state s is marked by λs ∈ S(X).

6



If λs is the trivial permutation, we call the state s passive, and call it active otherwise.

When X = {0, 1}, we write σ for the nontrivial permutation of X (i.e. σ(0) =

1, σ(1) = 0). In the diagrams of automata overX = {0, 1} we then mark active states with

σ, leave the label of passive states blank. Figure 2.1b shows how to draw the Lamplighter

automaton of Figure 2.1a in this way. A few more examples of such diagrams are in Figure

2.2, and further throughout this paper.

(a) Adding machine
(b) automaton F (c) automaton Z

Figure 2.2: Diagrams of invertible automata

Unless otherwise specified, we assumeX = Y , and write an automaton Aq = (S, q,X, π, λ).

An automaton state q acts on X∗, the d-ary tree T , and its boundary ∂T by the action

of Aq. We shall use A and q interchangeably for this action when the context is clear.

With an invertible tree endomophism g we can associate a portrait diagram that

uniquely determines g. Note that for a finite word w, g|w acts on X by a permutation

when g is invertible. The portrait consists of the infinite tree T with markings on the

nodes: node corresponding to word w is marked with the permutation of X induced by

g|w. When |X| = 2, we only mark the nodes with nontrivial permutation, and leave others

unmarked.

Example 2.1.3. The portrait of the adding machine of Figure 2.2a is shown in Figure 2.3.

Remark 2.1.4. Every tree automorphism has a portrait, but not all tree automorphisms

are given by finite automata.

7



......

Figure 2.3: The adding machine and its portrait

Definition 2.1.5: A Mealy automaton is said to be a Moore machine when the output

does not depend on the input. That is, for all s ∈ S, λs is constant: for all x, y ∈ X ,

λ(s, x) = λ(s, y). In this case, we simply write λ(s) for the value λs takes.

Remark 2.1.6. In this definition, the output only depends on the current state s. Some

authors use the definition of a Moore machine with a shift, where the output is determined

by the ending state π(s, x), and so does depend on the input.

Mealy automata A and B are said to be equivalent if A(w) = B(w) for all w ∈ X∗.

Definition 2.1.7: An initial Mealy automaton A is said to be minimal if it has the

smallest number of states out of all the automata in its equivalence class. This is a clas-

sical notion, as is the minimzation algorithm that produces the minimal automaton in a

given class; see [4] for a discussion of this algorithm (refer to [5] for a discussion of this

equivalence and an algorithm for constructing the minimal automaton in the more general

case of asynchronous Mealy machines, which we do not consider here). We also present

an implementation of an algorithm that minimizes a Mealy machine in the appendix.

Given automata A and B such that the output alphabet of A coincides with the input

alphabet of B, one can construct the product automaton, denoted A ·B, which computes

the compositionA◦B. We again refer to [5] for the construction of the product automaton.
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2.1.3 Sections of tree endomorphisms

Definition 2.1.8: Let g be an endomorphism of a d-regular rooted tree T , and w - a

finite word. A section of g by w, denoted g|w, is an endomorphism h of T such that for

any word or sequence v, g(wv) = g(w)h(v).

Remark 2.1.9. by definition of the automaton, and using the notation above, a finite au-

tomaton A has a finite set of sections, which is the subset of its states in the connected

component of the starting state in the diagram of the automaton A.

To a tree endomorphism g we can associate an automaton A = (S, g,X, π, λ) with the

initial state labeled by g, such that the action of A is identical to the action of g. We take

S = {g|w : w ∈ XN ⊔ g}, and define π(h, x) := h|x; λ(h, x) = h(x). The automaton

of restriction, in general, needs not be finite. When it is finite, the tree automorphism g is

said to be finite-state.

Remark 2.1.10. An automorphism g of the tree T is finite-state if and only if its portrait

contains a finite number of distinct (up to isomorphism of marked trees) subtrees. The

subtrees in the portrait diagram define sections of g.

We now prove several basic propositions related to sections of automorphisms which

we use in subsequent chapters.

Proposition 2.1.11. When an endomorphism g is invertible, all of its sections are invert-

ible, and for w ∈ X∗, (g|w)−1 = g−1|g(w).
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Proof. Let w ∈ X∗ and v ∈ XN. Then by definitions,

wv = g−1(g(wv))

= g−1(g(w)g|w(v))

= g−1(g(w))g−1|g(w)(g|w(v))

= wg−1|g(w)(g|w(v)).

Therefore, g−1|g(w)(g|w(v)) = v, and the proposition holds. □

Proposition 2.1.12. Let A be a tree endomorphism, and w, v be finite words in X . Then

A|wv = (A|w)|v.

Proof. For u - any word,A(wvu) = A(w)A|w(vu) = A(w)A|w(v)(A|w)|v(u) = A(wv)(A|w)|v(u);

so the proposition holds by definition. □

Proposition 2.1.13. Let A,B be tree endomorphisms, and w - finite word in X . Then

(AB)|w = A|B(w)B|w.

Proof. Let v be a finite word. By the definition of section,

AB(wv) = A(B(w)B|w(v))

= AB(w)A|B(w)Bw(v),

so (AB)|w = A|B(w)Bw. □

Corollary 2.1.14. Let A,B be tree endomorphisms, and w, v - finite words in X . Then

(AB)|wv = A|B(wv)B|wv = A|B(w)B|w(v))(B|w)|v.

Proposition 2.1.15. An|w = A|An−1(w)A|An−2(w) . . . A|A(w)A|w.
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Proof. The result holds trivially when n = 1. By Prop. 2.1.13,

An|w = (A ◦ An−1)|w

= A|An−1(w)(A
n−1|w).

The result follows by induction. □

Proposition 2.1.16. Assume A acts transitively on levels, |w| = n, and a ∈ X . Then

A2n |w(a) ̸= a.

Proof. If A2n|w(a) = a, then wa, a word of length n+ 1, is a fixed point of A2n , contrary

to the assumption that the length of the orbit of A on words of length n+ 1 is 2n+1.

2.1.4 Bounded-activity automata

Definition 2.1.17: An automaton A is said to have bounded activity if the number of

nontrivial sections on every level is bounded by a global constant c:

∃c : ∀n ∈ N : |{A|w : A|w ̸= 1, w ∈ Xn}| < c.

In such cases, we say that the automaton A is bounded.

Example 2.1.18. The adding machine in Figure 2.2a is a bounded automaton. △

Proof. The two states of the automaton are the active state, A (nontrivial section), and the

trivial state, 1 (trivial section). From the diagram of the automaton:

A|0 = 1

A|1 = A

1|0 = 1

1|1 = 1
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By inductively applying Prop. 2.1.12, A|w ̸= 1 if and only if w = 11 . . . 1. Thus the

number of nontrivial sections on every level is 1, and the adding machine is a bounded

automaton. △

Remark 2.1.19. The adding machine can also be defined by its portrait in Figure 2.3, in

which case it is bounded by definition.

Proposition 2.1.20. If A is a tree endomorphism given by a finite Mealy automaton A

which is bounded and acts transitively on levels, then the set

TA := {An|w : n ≤ 2|w|, w ∈ X∗}

is finite. That it, the set of sections of powers of a bounded automaton is finite.

Proof. First, from Prop. 2.1.15,

TA := {A|An−1(w)A|An−2(w) . . . A|A(w)A|w : n ≤ 2|w|, w ∈ X∗}.

For a given w, consider the finite sequence of words w,A(w), A2(w), . . . , An−1(w)

with n ≤ 2|w|. By transitivity of action of A, all elements in it are distinct, and thus this

sequence is a subset of vertices on level |w|.

Since A is bounded, let c be the constant such that at most c sections on every level are

nontrivial. Thus in any product

A|An−1(w)A|An−2(w) . . . A|A(w)A|w

with n ≤ 2|w|, at most c elements are nontrivial. Since A is finite by assumption, the
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nontrivial sections are enumerated by the finite set of states SA of A. Therefore,

|TA| ≤ |SB|c. □

2.1.5 Activity of tree automorphisms

A tree automorphism g is said to have polynomial activity (resp. subexponential,

exponential activity) if the number of words w of length n such that g|wXN is nontrivial

is at most polynomial (resp. subexponential, exponential) in n. That is, the number of

nontrivial sections grows polynomial in level.

If g has polynomial activity, then g|w is trivial for mostw. For suchw, ĝ = π(g, w) acts

trivially; we call such states trivial, and all others - nontrivial. Note that in the diagram

of that automaton, all paths going from a trivial state can only go to trivial states; so if the

automaton is reduced, it may only have at most one trivial state I , with π(I, x) = I and

λ(I, x) = x for all x ∈ X .

From the above, it follows that if g is a tree automorphism generated by a reduced

finite automaton A (with initial state g), then A has a unique trivial state.

It is easy to show that strongly-connected automata, in general, do not have polynomial

activity (e.g. strongly-connected automata with two or more nontrivial cycles). Thus the

strongly-connected automata are a counterpart to the polynomial-activity ones.

2.1.6 Graphs of action

Definition 2.1.21: The graph of the action of an initial automaton Aq = (S, q,X, π, λ)

on a set S ⊂ T is the directed graph with vertex set S and edges w → λq(w) for w ∈ S.

The graph of action of automata A1q1 ,A2q2 , . . . ,Akqk on S is similarly defined as a di-

rected graph with vertex set S and edges w → λiqi(w), 1 ≤ i ≤ k and w ∈ S.

In this paper, we consider graphs of action on level n of two automata, O and A, with
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O being the adding machine (Figure 2.2a). Figure 2.4 shows examples of such graphs for

A being automaton Z (Figure 2.2c) and A being automaton F (Figure 2.2b).
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Figure 2.4: Examples of Schreier graphs

2.2 Measure-theoretic definitions

2.2.1 Ergodic theory

We now give a few definitions relevant to probability theory (ergodic theory).

A cylinder set wXN is a clopen subset of XN given by

wXN := {wv : w ∈ X∗, v ∈ XN}.

A probability vector p is a a vector p : X → [0, 1] with σi∈Xp(i) = 1. A stochastic

matrix on X is a matrix M : X ×X → [0, 1] whose rows are probability vectors.
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Definition 2.2.1: The Bernoulli measure on XN is a probability measure defined by

a probability vector p, given on the cylinders wXN by

µ(wXN) :=

|w|−1∏
i=0

p(wi),

and extended by additivity properties op probability measures. The uniform Bernoulli

measure is given by p =
(

1
|X| , . . . ,

1
|X|

)
(so, in our case, by p =

(
1
2
, 1
2

)
.

Informally, this measures probability of a sequence of independent events (e.g. coin

flips).

Definition 2.2.2: The Markov measure given by a probability vector l and a stochas-

tic matrix L is given on the cylinder sets wXN by

µ(wXN) := l(w0)

|w|−1∏
i=1

Lwi−1,wi
.

Informally, this measures the probability of events where the probability of an outcome

may depend on what the preceding outcome was.

Let X = {a1, . . . , ak} be a finite alphabet, and L-a k-by-k irreducible stochastic

matrix (with entries indexed by X) with a stationary probability vector l. That is,∑
b Lab = 1 for all a ∈ X , lL = l, and the directed graph whose incidence matrix is given

by nonzero entries of L is path-connected. Let µ be the invariant Markov measure on

XN induced by L; µ is given on the cylinders by

µ(x1x2 . . . xnX
N) = lx1Lx1,x2Lx2,x3 . . . Lxn−1xn .

In this text, we consider the following generalization of Markov measures, and com-

pare it to finite-state measures (to be defined later):
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Definition 2.2.3: a Bowen-Gibbs measure, or simply a Gibbs measure ν is a measure

such that for some C,P ∈ R (C > 0) and all w ∈ Xnn,

1

C
<

ν(w0 . . . wn−1X
N)

exp(−nP +
∑n−1

i=0 f(σ
iw))

< C.

The function f is called the potential of the measure ν. For further details, refer to [6] for

an introduction to the subject.

Hereafter, we let B be the sigma-algebra generated by cylinder setswX∞, forw - finite

word.

The shift operator σ acts on XN by “eating” the first character: σ(aw) = w, for

a ∈ X , w ∈ XN.

A probability measure ν onXN is invariant (with respect to the shift σ) if ν(σ−1(E)) =

ν(E) for all E ∈ B. We call an probability measure ν ergodic if for all invariant sets

E ∈ B (sets such that σ−1(E) = E), either ν(E) = 1 or ν(E) = 0 holds.

Equivalently, we may say that the shift σ is an invariant and ergodic transformation on

(X,B, ν), or that (XN,B, ν) is a probability-preserving transformation (ppt for short).

Example 2.2.4. the invariant Markov measure µ defined above is invariant and ergodic

[7]. It is invariant, but not ergodic if we let L be not irreducible. Bernoulli measures given

by a positive vectors are specific cases of invariant Markov measures, and so are invariant

and ergodic. △

2.2.2 Sections of a measure

Definition 2.2.5: the null measure ν0, also called a trivial measure, is a measure

defined by ν0(E) = 0 for all cylinder sets E.

Definition 2.2.6: If µ is a probability measure on XN, the section of µ by a word
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w ∈ X∗ is µ|w defined by

µ|w(vXN) :=


µ(wvXN)

µ(wXN)
, when µ(wXN) ̸= 0;

0, otherwise

for all v ∈ X∗. When µ is a probability measure, µw can be seen as the conditional

probability given w.

We say a word w is admissible (with respect to µ) if µ(wXN) ̸= 0. Unless speci-

fied, we assume that w is admissible when the section µ|w is taken. We say a word w is

forbidden if it is not contained in any admissible word.

The following propositions outline how to compute sections of measures.

Proposition 2.2.7. For v, w ∈ X∗, (µ|w)|v = µ|wv.

Proof. If µ(wXN) = 0, then µ(wvXN) = 0, and the proposition holds. Otherwise,

assume µ(wXN) ̸= 0 and µ(wvXN) ̸= 0.

Let u ∈ X∗. By definition,

(µ|w)|v(uXN) =
µ|w(vuXN)

µ|w(vXN)

=
µ(wvuXN)

µ(wXN)µ|w(vXN)

=
µ(wvuXN)

µ(wvXN)

= µ|wv(uX
N). □

Corollary 2.2.8. Let µ =
k∑

i=1

aiµi, where ai ∈ R and µi are probability measures, and
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let w be admissible. Then

µ|w =
1

µ (wXN)

k∑
i=1

aiµi

(
wXN

)
µi|w.

Proof. For v ∈ X∗,

µ|w
(
vXN

)
=

1

µ (wXN)

k∑
i=1

aiµi

(
wvXN

)
=

1

µ (wXN)

k∑
i=1

aiµi

(
wXN

)
µi|w. □
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3. Finite-state measures

In this chapter we introduce the notion of a finite-state measure, explore its properties,

and study images of Markov and finite-state measures under the action of tree endomor-

phisms.

3.1 Definition and basic propositions

Definition 3.1.1: a measure µ is finite-state if the set of sections of µ is finite.

Example 3.1.2. Bernoulli and Markov measures (definitions 2.2.1 and 2.2.1, resp.) are

finite-state:

• a Bernoulli measure µ only has one (nontrivial) section, since when w is admissible,

µ|w = µ by definition:

µ|w(vXN) =
µ(wvXN)

µ(wXN)

=

∏|w|−1
i=0 p(wi)

∏|v|−1
j=0 p(vj)∏|w|−1

i=0 p(w(i))

=

|v|−1∏
j=0

p(vj) = µ(vXN).

Another way to say it is that it measures probability of independent events, where

the next outcome does not depend on the previous ones.

• a Markov measure µ has at most |X|+ 1 nontrivial sections: µ and µ|x for x ∈ X .

This is because µ|wx = µ|x for all admissible words w ∈ X∗. Indeed, assuming w

is not the empty word (since otherwise there’s nothing to show),
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µ|wa(vX
N) =

µ(wavXN)

µ(waXN)

=

(
l(w0)

∏|w|−1
i=1 L(wi−1, wi)

)
L(w|w|−1, a)

(
L(a, v0)

∏|v|−1
j=1 L(vj−1, vj)

)
(
l(w0)

∏|w|−1
i=1 L(wi−1, wi)

)
L(w|w|−1, a)

= L(a, v0)

|v|−1∏
j=1

L(vj−1, vj)

=
l(a)L(a, v0)

∏|v|−1
j=1 L(vj−1, vj)

l(a)

=
µ(avXN)

µ(aXN)

= µ|a(vXN).

△

Definition 3.1.3: a k-step Markov measure is a measure µ such that for all words

admissible w ∈ X∗ of length k and all admissible v ∈ X∗, µ|vw = µ|w.

Informally, this measures the probability of events where the probability of an outcome

may depend on what the preceding k outcomes was. It can be shown that k-step Markov

measures are Gibbs; refer to [6] for details.

Remark 3.1.4. A Markov measure is a 1-step Markov measure. A k-step Markov measure

on XN with |X| = d is finite-state with at most
dk+1 − 1

d− 1
sections.

Proof. note that a finite d-tree of depth k + 1 has 1 + d + d2 + . . . + dk = dk+1−1
d−1

nodes,

which encode all words of length not exceeding k. By definition, every nontrivial section

of a k-step Markov measure is a section by one of these words. □

With a finite-state measure µ, one can associate an automaton Aµ that computes the

measure; this will be defined more precisely in the following proposition. We say that Aµ
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determines the measure µ.

Proposition 3.1.5. Let µ be a finite-state probability measure, with sections µ1, . . . , µn

(where µi = µ|wi
for some wi ∈ X∗). Consider an automaton Aµ with input alphabet

X , output alphabet Y ⊂ [0, 1], state set S = {µ1, . . . , µn}, initial state s0 = µ ∈ S, and

transition and output functions defined by

π(µi, a) := µi|a; (3.1)

λ(µi, a) := µi(aX
N).

The automaton defined in 3.1 uniquely determines µ via the following relation: for w ∈

X∗, Aµ(w) = p0p1 . . . p|w|−1 is a sequence of real numbers whose product is µ(wXN):

µ(wXN) =

|w|−1∏
i=0

(Aµ(w))i. (3.2)

Proof. The proposition holds for when |w| = 1 by construction; assume it holds for all

words of length k. Then for w = w0w1 . . . wk,

k∏
i=0

pi = µ(w0w1 . . . wk−1X
N) · ((. . . (µ|w0)|w1)|w2) . . .)|wk−1

(wkX
N)

= µ(w0w1 . . . wk−1X
N)µ|w0w1...wk−1

(wkX
N) by inductively applying Prop. 2.2.7

= µ(w0w1 . . . wkX
N) = µ(wXN).

The proposition holds by induction. □

Definition 3.1.6: When µ and M are as in 3.1.5, wecall a state s of M trivial if it

determines a trivial section if µ. Refer to Example 3.1.12 for an automaton with a trivial

state; in particular, the state µ|11 in Figure 3.4a is trivial.
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Example 3.1.7. The automaton computing a Bernoulli measure on {0, 1}N defined by

p = (p(0), p(1)) is depicted in Figure 3.1a. △

Example 3.1.8. The automaton computing a Markov measure on {0, 1}N defined by a

vector l = (l(0), l(1)) and a matrix L = Lij is depicted in Figure 3.1b. △

Example 3.1.9. The automaton computing a 2-step Markov measure on {0, 1}N defined

by l = (l(0), l(1)) and L = Lij is depicted in Figure 3.2. △

(a) Diagram of the automaton comput-
ing a Bernoulli measure

(b) Diagram of the automaton computing a Markov mea-
sure

Figure 3.1: Automata determining a Bernoulli and a Markov measure on {0, 1}N

Note that for a finite word w, µ|w can be seen as a function onX by giving the measure

of the cylinder xXN for x ∈ X .

Similarly to tree automorphisms, we define the portrait of the measure µ to be the

diagram consisting of the marked tree T , where the node corresponding to a word w is

marked with the values µ|w takes on X . A portrait defines a measure uniquely.

When dealing with probability measures, it is often convenient to consider the vector

pw := (µ_w(x0XN), . . . , µ|w(xd−1X
N) up to scaling, since

∑d−1
i=0 µ(xiX

N) = 1, and so
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Figure 3.2: Diagram of the automaton defining a general 2-step Markov measure on
{0, 1}N

the proportion pw0 : pw1 : . . . : pwn−1 ∈ RP n defines the values of µ on X unambigu-

ously. We then use the proportion as the corresponding label in the portrait.

Example 3.1.10. The uniform Bernoulli measure has one section with proportion 1 : 1.

Its portrait is shown in Figure 3.3.
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Figure 3.3: Portrait of the uniform Bernoulli measure on a binary alphabet up to level 5
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Remark 3.1.11. As with automorphisms, one can draw the portrait of any probability

measure on the space XN, but not all probability measures are finite-state.

It should be noted that even small automata define interesting finite-state measures.

Example 3.1.12. The measure µ defined by the automaton in Figure 3.4a is a 2-step

Markov measure on Ω = {0, 1}N that is not a 1-step Markov measure on Ω. It is sup-

ported on the Fibonacci subshift, which is the (shift-invariant) subset of Ω consisting of

all sequences that do not contain consequtive 1’s. The number of nontrivial sections of µ

by words of length n is the n + 1’st Fibonacci number, as can be seen in the portrait of µ

shown in Figure 3.4b.

In drawing the portrait, we omit the subtrees corresponding to the null measure for

clarity.

Example 3.1.12 necessitates the following definition:

Definition 3.1.13: we say that a state s of an automaton defining a finite-state measure

is trivial if λ(s, x) = 0 and π(s, x) = s for all x ∈ X . Note that s defines the trivial (i.e.

null) measure.

As an example, µ|11 in Figure 3.4a is a trivial state.

Remark 3.1.14. Given a finite-state measure µ, the automaton defined in 3.1 is minimal

and contains at most one trivial state.

3.2 Images of finite-state measures under tree automorphisms

The following proposition is useful for constructing the automata of finite-state mea-

sures which are images of automata actions:

Proposition 3.2.1. LetA = (X,S, s0, π, λ) be a Mealy automaton with initial state s0 = g
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(a) 2-step Markov measure µ on {0, 1}N
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(b) Portrait of µ up to level 5

Figure 3.4: A finite-state measure supported on the Fibonacci subshift

acting on T , and let ν be a probability measure on ∂T . Then for x ∈ X ,

(g∗ν)(xX
N) =

∑
y∈λ−1

g (x)

ν(yXN);

(g∗ν)|x =

∑
y∈λ−1

g (x)

ν(yXN)(g|y)∗(ν|y)

∑
y∈λ−1

g (x)

ν(yXN)
. Note: g|y = πg(y)

where πg(x) := π(g, x) and λg(x) := λ(g, x).
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Proof. Note that for a word w ∈ X∗,

g−1(xwXN) =
⊔

y∈λ−1
g (x)

yπg(y)
−1(wXN).

By definition,

(g∗ν)|x(wXN) =
(g∗ν)(xwX

N

(g∗ν)(xXN)

=
ν(g−1(xwXN)

ν(g−1(xXN))

=

∑
y∈λ−1

g (x)

ν(yXN)ν|y
(
πg(y)

−1(wXN)
)

∑
y∈λ−1

g (x)

ν(yXN)ν|y
(
πg(y)

−1(XN)
)

=

∑
y∈λ−1

g (x)

ν(yXN)πg(y)∗(ν|y)(wXN)

∑
y∈λ−1

g (x)

ν(yXN)
. □

Corollary 3.2.2. When g is as in Prop. 3.2.1, and ν is a Bernoulli measure given by

probability vector p,

(g∗ν)|x =

∑
y∈λ−1

g (x)

p(y)πg(y)∗(ν)

∑
y∈λ−1

g (x)

p(y)
.

In particular, when ν is uniform Bernoulli, (g∗ν)(xXN) = |λ−1
g (x)|/|X|, and

(g∗ν)|x =
1

|λ−1
g (x)|

∑
y∈λ−1

g (x)

πg(y)∗(ν).

When ν is uniform Bernoulli, its pushforwards by invertible endomorphisms are easy:

Proposition 3.2.3. When ν is uniform Bernoulli and g is invertible, g∗ν = ν.
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Proof. For w ∈ X∗,

g∗ν(wX
N) = ν(g−1(wXN) = ν(g−1(w)XN) = |X|−|w| = ν(wXN). □

We now state a consequence of 3.2.1 on the sections of images of measures for invert-

ible automata:

Corollary 3.2.4. Let g be a state of an invertible Mealy automatonA, let µ be a probability

measure on XN, and x ∈ X . Let y = g−1(x), and h = π(g, y). Then

(g∗µ)(xX
N) = µ(yXN);

(g∗µ)|x = h∗(µ|y).

A consequence of this is the following theorem:

Theorem 3.2.5. Finite-state measures are preserved by action of invertible finite au-

tomata.

That is, if g is the initial state of an invertible finite automaton A, and µ is a finite-state

measure, then g∗µ is also a finite-state measure.

Proof: Let M be the automaton that computes µ. We construct a finite automaton N

that computes g∗µ.

Let A = (X,X, SA, g, πA, λA), and M = (X, Y, SM , µ, πM , λM) (here, Y ⊂ [0, 1],

µ ∈ SM , and SM is the finite set of sections of µ).

Let SN := {s∗ν : s ∈ SA, ν ∈ SM}.

Consider N = (X,Y, SN , g∗µ, πN , λN). Let s ∈ SA, ν ∈ SM . We define πN , λN using
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Corollary 3.2.4:

λN(s∗ν, x) := (s∗ν)(xX
N);

πN(s∗ν, x) := (s∗ν)|x ∈ SN by Corollary 3.2.4.

This is the automaton that computes g∗µ by definition.

More explicitly, let y = s−1(x) (i.e. the unique character in X such that s(y) = x),

and let t = πA(s, y). Then by Corollary 3.2.4:

λN(s∗ν, x) = ν(yXN) = λM(ν, y);

πN(s∗ν, x) = t∗(ν|y) = t∗πM(ν, y).

This allows one to construct the automaton N when A and M are given. □

We illustrate this theorem with the following example:

Example 3.2.6. Let automaton F be given in Figure 3.5a, and µ be a Markov measure

over a binary alphabet given by a stochastic matrix

L =

 L00 L01

L10 L11

 (3.3)

and a stationary vector l = (l(0), l(1)). We represent µ as a finite-state measure with the

automaton in Figure 3.5b. The automaton that computes a∗µ is presented in Figure 3.5c.

Theorem 3.2.5 explicitly specifies the transition and output functions for the automaton

g∗µ. However, it can be formulated in a much shorter way.

Theorem 3.2.7. Let A be an invertible finite automaton with initial state g, and µ be a

finite-state measure with automaton M .
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(a) automaton F
(b) Markov measure on a binary alphabet as
a finite-state measure

(c) Automaton for the finite-state measure F∗µ

Figure 3.5: An automaton, a finite-state measure, and its image

Then the automaton for g∗µ is M · A−1, where · is the automaton product. For s ∈

SA, ν ∈ SM , s∗ν is computed by the state (ν, s).

Proof. this follows directly from the definition of product automaton and Theorem 3.2.5.

Another way to see the same is that for w ∈ X∗,

g∗µ(wX
N) = µ(g−1(wXN)) = µ(g−1(w)XN).
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Therefore, the automaton M · A−1 computes g∗µ by the definition of the automaton of a

finite state measure. □

3.3 Conditions for the image a finite-state measure to be finite-state

In this section, we expand the results of Section 3.2 to study the image g∗µ of a finite-

state measure probability measure µ when g is given by a non-invertible automaton.

Observation: from Proposition 3.2.1, we see that a section of g∗µ by x ∈ X is a linear

combinations of images of sections of µ by sections of g. Combining this with the result

of Corollary 2.2.8, we obtain the following

Proposition 3.3.1. Let g and µ be finite-state, with sections g1, . . . , gk and µ1, . . . , µm,

respectively.

Then the sections of g∗µ lie in the km-dimensional vector space Vg,µ spanned by

Bg,µ = {gi∗µj : 1 ≤ i ≤ k, 1 ≤ j ≤ m}.

Proof. Let w ∈ X∗. The result holds when |w| = 1 as a direct consequence of Proposition

3.2.1 and Corollary 2.2.8. The result then holds by induction on |w|. □

We can therefore write a section of g∗µ as a row vector in the basis Bg,µ:

r = (r11, . . . , rkm) =
∑

i = 1k
m∑
j=1

rijgi∗µj.

Since a probability measure ν and its nontrivial sections satisfy ν(XN) = 1, only one

vector in the span of r defines a probability measure. Therefore, it makes sense to consider

r as an element of the projectivized space PVg,µ (formally defined below), writing it as

[r] = [r11 : . . . : rkm].

Definition 3.3.2: When µ is a finite-state measure, and g is a finite-state endomo-
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prhism of T ,

PVg,µ = Vg,µ/(ν ∼ αν, α ∈ R),

where Vg,µ us as in Proposition 3.3.1.

Theorem 3.3.3. Let µ be a finite-state measure given by an automatonM = (S, µ,X, π, λ),

g be a finite-state endomorphism of T .

Then X acts on PVg,µ (Def. 3.3) linearly by sections:

x · µ := µ|x.

The action is represented by a matrix Mx given by

Mx(s∗ν, t∗ξ) =
∑
y∈X

s(y)=x
s|y=t
ν|y=ξ

λ(ν, y)

where s, t are sections of g, and ν, ξ are sections of µ, and λ is the output function in the

automaton corresponding to µ. Then when µ is represented by a row projective vector [r],

µ|x is represented by [r ·Mx].

Proof. This is a direct consequence of the observation above; we simply apply the formula

in Proposition 3.2.1 and Corollary 2.2.8 and ignore the normalizing factor
1

µ(xXN)
:
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Mx(s∗ν, t∗ξ) = s∗ν(xX
N)

∑
y∈X

s(y)=x
s|y=t
ν|y=ξ

ν(yXN)
1

s∗ν(xXN)

=
∑
y∈X

s(y)=x
s|y=t
ν|y=ξ

λ(ν, y). □

We now obtain the criterion for the image being finite-state.

Theorem 3.3.4. Let g be a finite-state automorphism, µ a finite state measure, and let [v]

be the row vector representing [g∗µ] ∈ PVg,µ (using the basis Bg,µ). Let O be the orbit of

v under the action of the free semigroup generated by the matrices Mx for x ∈ X:

O =

{
v ·

n∏
i=1

Mxi
: n ∈ N ∪ 0, xi ∈ X

}
.

Then points in O are representations of the sections of g∗µ.

In particular, g∗µ is finite-state if and only if O is finite.

Proof. by Theorem 3.3.3, for w = w1w1 . . . wn ∈ X∗, g∗µ|w is represented by

v ·
n∏

i=1

Mwi
.

The result follows. □

We develop examples for Theorem 3.3.4 in Section 4.3 with µ being the uniform

Bernoulli measure. In particular, Example 4.3.7 illustrates the case when the orbit O

is finite, and Example 4.3.8 illustrates the case when O is infinite.
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3.3.1 Quasi-finite-state measures

Observations in Section 3.3 necessitate the following definition:

Definition 3.3.5: a measure µ is called quasi-finite-state if the dimension of the

vector space spanned by its sections is finite.

Corollary 3.3.6. Quasi-finite-state measures are preserved by actions of tree endomor-

phisms. In particular, images of (quasi)finite-state measures under such actions are quasi-

finite-state.

Proof. This is immediate from Theorem 3.3.4. □

Note that the so-called 1-block maps (maps XN → Y N induced by a surjective map

π : X → Y ) are given by non-invertible automata. Without loss of generality, one may

consider Y as a proper subset of X . Sofic measures are images of Markov measures under

1-block maps. We obtain the following:

Proposition 3.3.7. Sofic measures are quasi-finite-state.

3.4 Conditions for a finite-state measure to be k-step Markov

The following theorem (whose proof was communicated by Y. Vorobets) provides nec-

essary and sufficient conditions for a finite-state measure to be k-step Markov:

Theorem 3.4.1. Let µ be a finite-state measure, and letM be the automaton that computes

it. Assume M is minimal and strongly-connected, and µ1, . . . , µn are its nontrivial states.

Then µ is k-step Markov (for some k) if and only if for any word w ∈ X∗, there is at

most one i, 1 ≤ i ≤ n, such that µi|w = µi.

When µ is k-step Markov, k ≤ n(n− 1) + 1.

Proof. ⇒ Let µ be k-step Markov. Assume, for a contradiction, that the hypothesis of

the theorem does not hold, and there exist two states, s and t, and a word w such that

π(s, w) = s and π(t, w) = t.
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Let s0 be the initial state of M . Let ws be a word such that π(s0, ws) = s, and let wt

be a word such that π(s0, wt) = t; such words exist because M is strongly-connected by

assumption.

Fix u = www . . . w such that |u| > k. Then

π(s0, wsu) = π(s, u) = π(s, ww . . . w) = s

π(s0, wtu) = π(t, u) = π(t, ww . . . w) = t

Now the sections µ|wsu = s and µ|wtu = t are different, but |wsu| = |wtu| > k, i.e. the

section cannot be determined by examining the suffix of length k (see definition 3.1). This

contradicts the assumption that µ is k-Markov. □

⇐: assume the hypothesis holds. For µ to be k-step Markov, it suffices to show that for

any two distinct, nontrivial states s and t, and any word w with |w| = k, either π(s, w) =

π(t, w) if neither is a trivial state.

Let k = n(n− 1), and fix w with |w| = k. Consider the list of pairs

(s, t)

(π(s, w0), π(s, w1))

(π(s, w0w1), π(t, w0w1))

. . .

(π(s, w), π(t, w))

Assume that this list doesn’t contain trivial states, the definition of k-step Markov

measure only applies to admissible words.

If any pair contains two non-distinct states, we are done: if π(s, w0w1 . . . wi) =

34



π(t, w0w1 . . . wi) = q for some i, 0 ≤ i < k, then π(s, w) = π(t, w) = π(q, wi+1 . . . wk−1.

Therefore we assume that it is not the case, and all pairs in the list contain two distinct

states.

Since there are n nontrivial states by assumption, there are at most n(n − 1) distinct

pairs of nontrivial states. Since k > n(n− 1), there is a repetition in this list, i.e.

(π(s, w0..wi), π(t, w0..wi)) = (π(s, w0..wj), π(t, w0..wj))

for some 0 ≤ i < j ≤ k. But that means that the word w′ = wi+1 . . . wj fixes two distinct

states s′ = π(s, w0..wi) and t′ = π(t, w0..wi); that is, π(s′, w′) = π(t′, w′) and s′ ̸= t′.

This contradicts the hypothesis. The theorem holds by contradiction. □

Remark: the free semigroup FS(X) generated by X acts on the states of an automa-

tonM : for w ∈ FS(X), w ·s := π(s, w). The condition of Theorem 3.4.1 can be re-stated

as follows: for all w ∈ X∗, the action of w on the states of M has either no fixed points,

or only one fixed point. This motivates the following:

Definition 3.4.2: an automaton is unifixed if it satisfies the condition of Theorem

3.4.1.

Corollary 3.4.3. Let g be a tree automorphism given by automaton A. The image g∗µ

of a Markov measure µ is k-step Markov (and hence Gibbs) if and only if the automaton

M · A−1 is unifixed.

Remark 3.4.4. Not all minimal, strongly-connected automata are unifxied. The automa-

ton is in Figre 3.6 is an example of such automaton for which the condition of Theorem

3.4.1 fails: the action of the word 01 on the states of the automaton has two fixed points

(the two upper states in the diagram). Therefore, the finite-state measure defined by this

automaton is not a k-step-Markov measure.
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Figure 3.6: A diagarm of the automaton of a finite-state measure that is not k-step Markov
for any k.

.

3.5 When finite-state measures are not Gibbsian

Recall definition 2.2.1 of a Gibbs measure.

Since k-step Markov measures are Gibbs, Corollary 3.4.3 allows us to obtain a suffi-

cient condition for images of Markov mesaures to be Gibbs.

Example 3.5.1. Let a be the tree automorphism given by automatonF , and let µ be a

Markov measure on a binary alphabet (Figure 3.5a and 3.5b). The automaton N defining

the measure a∗µ (Figure 3.5c) is not unifixed. Indeed,

πN(a∗µ|0, 1010) = a∗µ|0

πN(b∗µ|1, 1010) = b∗µ|1

Therefore, the measure a∗µ is not k-step Markov for any k. △

Furthermore, we show that q∗µ is not Gibbs. Informally, the idea behind the proof is

that we can’t tell by the tail of a word which 0101... cycle we’re in, and the outputs of the

two 0101.. cycles can be very different. This idea is formalized in the following:
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Theorem 3.5.2. Let µ be a finite-state measure with automaton M that is not unifixed,

and let w ∈ X∗ and two sections µ1 = µ|v1 and µ2 = µ|v2 of µ be such that π(µ1, w) = µ1

and π(µ2, w) = µ2.

Assume µi(viwX
N) ̸= 0 for i = 1, 2, and µ1(wX

N) ̸= µ2(wX
N). Then µ is not

Gibbs.

Proof: For a contradiction, assume µ is Gibbs, and let f be the potential function.

Recall that for a section s of µ,

s(wXN) = λ(s, w1) · π(s, w1)(σ(w)X
N)

by definition of the automaton computing a finite-state measure (see 3.2). Let pi =

µ(viX
N), and and let qi = µi(wX

N). Then by assumption of the theorem, pi ̸= 0,

qi ̸= 0, and

µ(viw
nXN) = piq

n
i .

Let W = wN ∈ XN. By the assumption, µ is Gibbs, so there exists C > 0 such that

for i = 1, 2,

1

C
<

µ(viw
nXN)

exp

|viwn|∑
k=0

f(σk(viW ))

 < C. (3.4)

Let

bi := exp

 |vi|∑
k=0

|f(σk(viW ))

 .
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We can now rewrite the inequality 3.4 as follows:

1

C
<

piq
n
i

bi exp f(W )
< C

1

C

bi
pi
<

qni
exp f(W )

< C
bi
pi

Considering the above for i = 1, 2, we obtain:

1

C2

b1p2
b2p1

<
qn1
qn2

< C2 b1p2
b2p1

Without loss of generality, assume q1 > q2, and consider the limit as n→ ∞ of each term.

We arrive at a contradiction: the lower and upper bounds in 3.5 do not depend on n, but

(q1/q2)
n grows without bound.

Therefore, there is no way to associate a Gibbs potential function f with µ, and µ is

not Gibbs. □

Example 3.5.3. The measure a∗µ of Figure 3.5c is not Gibbs when L (see 3.3) has positive

entries, and L4
00 ̸= L2

11L10L01

The preceding theorem motivates the following definition. Let us call a finite-state

measure µ determined by an automaton M quasi-unifixed if for every w in the free semi-

group FS(X), if µ1 and µ2 are fixed points of the action of w on the states of M , then

µ1(wX
N) = µ2(wX

N).

The proof of Theorem 3.5.2 does not apply to quasi-unifixed measures that are not

unifixed. We put forth the following

Conjecture 3.5.4. All quasi-unifixed finite-state measures are Gibbsian.
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3.6 Finite-state measures, random walks and Markov chains

With a finite-state measure µ one can associate a random walks on the diagram of the

automaton M of µ. Define a random walk on the states of M with transition probability

λ(s, x) for the (directed) edge s→ π(s, x). Then

µ(wXN) = P

(
µ

w1−−−−−→
µ(w1XN)

µ1
w2−→
...

. . .
wn−→
...

µn

)
,

where P stands for the probability of a path (this follows directly from definitions; cf. 3.2

in Proposition 3.1.5).

Remark: Every finite-sate measure defines a random walk. Conversely, a random

walk on a directed graph with constant out-degree d gives rise to a finite-state measure

under labeling the edges of the graph with elements of an alphabet X of size d as input

symbols, and putting the corresponding probabilities as output.

Definition 3.6.1: A finite-state measure µ determined by the automatonM = (S, µ0 =

µ,X, π, λ) defines a Markov chain on the set of sections of µ with initial distribution

p = pµ and transition probability matrix P = Pµ given by

p(µi) =


1, if µi = µ0 = µ

0, otherwise
(3.5)

P(µi, µj) =
∑

x∈X :π(µi,x)=µj

λ(µi, x). (3.6)

Example 3.6.2. The measure a∗µ of Figure 3.5c defines a Markov chain given by the
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stochastic matrix

Pa∗µ =



0 0 0 p 1− p 0

0 0 0 1− q q 0

0 0 1− p 0 0 p

0 0 q 0 0 1− q

1− p p 0 0 0 0

q 1− q 0 0 0 0


The Markov chain defined in 3.6 allows us to apply the rich theory of Markov chains

for finite-state measures.

Proposition 3.6.3. Let µ be a finite-state measure determined byM = (S, s0 = µ,X, π, λ).

Suppose Pµ has a stationary probability vector p (such that pP = p). Define a measure µ̃

by

µ̃ =
∑
s∈S

pss.

Then µ̃ is a shift-invariant measure (w.r.t. the shift operator σ : XN → XN).
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Proof: suffices to show for the cylinder sets wXN:

µ̃(σ−1(wXN)) =
∑
x∈X

µ̃(xwXN)

=
∑
x∈X

∑
s∈S

pss(xwX
N)

=
∑
x∈X

∑
s∈S

psλ(s, x)π(s, x)(wX
N)

=
∑
t∈S

∑
s∈S

∑
x∈X : π(s,x)=t

psλ(s, x)t(wX
N)


=
∑
t∈S

∑
s∈S

ps

 ∑
x∈X : π(s,x)=t

λ(s, x)

 t(wXN)

=
∑
t∈S

(∑
s∈S

psPs,t

)
t(wXN)

=
∑
t∈S

ptt(wX
N) = µ̃(wXN). □

Lemma 3.6.4. Let µ, P and µ̃ be as in Proposition 3.6.3. Let µ be defined by an automaton

M = (S, µ1, X, π, λ) with the set of sections S = {µ1, . . . , µl}, and let Λ = (µ1, . . . , µl).

Let sigma : XN → XN be the (one-sided) shift. Then for 1 ≤ t ≤ l,

σ∗µt = (PΛ)t.
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Proof. on a cylinder set w1 . . . wnX
N,

σ∗µt(w1 . . . wnX
N) = µ(σ−1(w1 . . . wnX

N))

=
∑
x∈X

µt(xw1 . . . wnX
N)

=
∑
x∈X

λ(µt, x) · π(µt, x)(w1 . . . wnX
N)

=
l∑

q=1

 ∑
x∈X

π(µt,x)=µq

λ(µt, x)

µq(w1 . . . wnX
N)

=
l∑

q=1

Ptqµq(w1 . . . wnX
N)

= (PΛ)t(w1 . . . wnX
N) □

Proposition 3.6.5. Let µ, M , P, µ̃ and Λ be as in Lemma 3.6.4. Assume P is irreducible.

Then µ̃ is ergodic (with respect to the shift σ), and is mixing whenever P is aperiodic.

Note: in this proof, for s ∈ S - a state of M , we will write µs for the section of µ given

by s.

Proof. we need to show that

lim
k→∞

1

k

k−1∑
i=0

µ̃(A ∩ σ−kB) = µ̃(A)µ̃(B) (3.7)

for all cylinder sets A = x1x2 . . . xmX
N and B = y1y2 . . . ynX

N.

Since we are taking the limit as n → ∞, we can consider the sum in 3.7 starting from
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k = m and replace the expression under the limit with

1

k

k−1∑
i=0

µ̃(A ∩ σ−kB) =
1

k

k−1∑
i=m

∑
w∈X∗

|w|=i+1−m

∑
s∈S

p(s)µs(x1 . . . xmX
N) · µt(wy1y2 . . . ynX

N),

(3.8)

where

s = s1
x1−→ s2

x2−→ . . . sn
xn−→ t.

The right-hand side of 3.8 is then equal to

=
∑
s∈S

p(s)µs(x1 . . . xmX
N)

1

k

k−1∑
i=m

∑
w∈X∗

|w|=i+1−m

µt(wy1 . . . ynX
N)

=
∑
s∈S

p(s)µs(A)
1

k

k−1∑
i=m

(
σi+1−m
∗ µt

)
(B)

=
∑
s∈S

p(s)µs(A)

[(
1

k

k−m∑
i=1

Pi

)
Λ

]
t

(B)

However, when P is irreducible, from the theory of Markov measures

1

k

k−m∑
i=1

Pi → P =


p(1) . . . p(l)

. . . . . .

p(1) . . . p(l)

 .

That is, the components of P ij = p(j) do not depend on the row.
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Hence the RHS of 3.8 is equal in the limit to:

=
∑
s∈S

p(s)µs(A)


∑

s∈S p(s)µs

. . .∑
s∈S p(s)µs


t

(B)

=
∑
s∈S

p(s)µs(A)

(∑
s∈S

p(s)µs

)
(B)

= µ̃(B)
∑
s∈S

p(s)µs(A)

= µ̃(B)µ̃(A). □

Corollary 3.6.6. Assume that the automaton M defining the finite-state measure µ is

strongly-connected (in particular, µ has no trivial sections). Then µ̃ is ergodic.

Proof. when the graph of M is strongly-connected, P is irreducible. This is a classical

result (see, e.g., [7]). □

Lemma 3.6.7. Assume that µ is as before. Then µ≪ µ̃.

Proof. We need to show that for a cylinder set wXN, w ∈ X∗, µ̃(wXN) = 0 ⇒

µ(wXN) = 0. But when the automaton of µ is strongly-connected, µ̃ is a linear com-

bination of sections of µ with positive weights: µ̃ =
∑

s∈S p(s)µs with p(s) > 0. Then

µ̃(wXN) = 0 ⇒ µs(wX
nn) = 0∀s ∈ S ⇒ µ = µs0 = 0. □

Theorem 3.6.8. Let µ, p be as in Propotion 3.6.5. Then the frequency of x ∈ X w.r.t. µ is

well-defined and is given by

freq x =
∑
s∈S

p(s)λ(s, x).
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Proof: we apply the pointwise Ergodic theorem: for µ̃-almost all w ∈ XN,

freq(x) = lim
n→∞

1

n

n∑
k=1

χxσ
n(w)

=

∫
XN

χx dµ̃

= µ̃(xXN)

=
∑
s∈S

p(s)λ(s, x).

The theorem holds since µ≪ µ̃. □

Example 3.6.9. The measures a∗µ|0 and a∗µ|1 of Figure 3.5c have a stationary probability

vector (
q

3(p+ q)
,

p

3(p+ q)
,

q

3(p+ q)
,

p

3(p+ q)
,

q

3(p+ q)
,

p

3(p+ q)

)
,

and the frequency vector (
2p+ q

3(p+ q)
,
p+ 2q

3(p+ q)

)
.

Since both sections of a∗µ have the same frequency vector, this is the frequency vector of

a∗µ as well.
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4. The Automatic Logarithm

In this chapter we introduce the notion of the automatic logarithm, and apply it to

the problem of studying the distribution of chords in a Scherier graph of action of two

automata.

4.1 Definitions

Let X be a finite alphabet, |X| = d, so T is a regular d-tree with level n of size dn.

Let A be an endomorphism of the tree T acting transitively on each level.

Then for any pair of words w1, w2 of length n, there is a unique integer k in 0..dn − 1

such that Ak(w1) = w2. Furthermore, if Ak(w1) = Ak′(w1) for some integers k, k′, then

k ≡ k′ mod dn. These are basic properties of finite orbits of length dn. This leads to the

following

Definition 4.1.1: on words of length n, the displacement dA,n : dn × dn → Z/KnZ

is the function defined by

dA,n(w1, w2) := [k]dn ⇔ Ak(w1) = w2,

where [k]dn ∈ Z/dnZ is the equivalence class mod dn. We write [k] when n is fixed.

Definition 4.1.2: for m,n ∈ N, with n ≥ m, the natural projection ϕm,n : Z/dnZ →

Z/dmZ is defined by ϕm,n([k]dn) := [k]dm .

The functions dA,n for different values of n are compatible with each other w.r.t the

natural projection:

Proposition 4.1.3. Let |w1| = |w2| = n and a, b ∈ X . Then

ϕn,n+1(dA,n+1(w1a, w2b)) = dA,n(w1, w2).
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Proof: let dA,n(w1, w2) = [k] (so that Ak(w1) = w2), with k ∈ 0..dn − 1.

Let a′ = Ak|w1(a). Then Ak(w1a) = w2a
′. Note that

AKn+k

(w1a) = AKn

(w2a
′)

= AKn

(w2)A
Kn |w(a′).

By Prop. 2.1.16,

Adn|w(a′), A2dn |w(a′), . . . , A(k−1)dn |w(a′),

are all distinct. Since |X| = K, this implies Atdn |w(a′) = b for some t ∈ 0, 1, . . . , d − 1.

Thus Atdn+k(w1a) = w2b, whence dA,n+1(w1a, w2b) = [k + tdn].

Since ϕn,n+1([k + tdn]) = [k], the proposition holds. □.

Let B be another tree endomorphism.

Definition 4.1.4: on words of length n, logA,n(B) : Xn → Z/dnZ is a function which

calculates the displacement of a word by B along the orbit of A:

logA,n(B)(w) := dA,n(w,B(w))

Corollary 4.1.5. (of Prop. 4.1.3)

ϕn,n+1(logA,n+1(B)(wa) = logA,n(B)(w).

In other words, if |w| = n and a ∈ X , the displacement of wa by B along the orbit of

A is either the same as displacement of w, or differs by a multiple of dn.

Corollary 4.1.6. for any non-negative integers m,n with m < n, the following diagram
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commutes:

Xn σn−m
r - Xm

Z/dnZ

logA,n(B)

? ϕm,n - Z/dmZ

logA,m(B)

?

Proof. This follows by induction from Prop. 4.1.3.

Let Zd be the inverse limit of the directed system

Z/dnZ
ϕm,n- Z/dmZ

(for m,n ∈ N). We make the following observation:

Proposition 4.1.7. There exists function logA(B) : ∂T → Zd (where Zd are the d-adic

integers), which restricts to logA,n(B) on level n for all n.

Proof. Take the inverse limit of the directed systems in the commutative diagram of Corol-

lary 4.1.6 □

Remark 4.1.8. By identifying Zd with ∂T , we say that logA(B) acts on T by endomor-

phisms. (Here, we identify w ∈ Zd with its representation as an infinite d-ary string

w0w1w2 . . . ∈ ∂T ).

When d is prime, Zd is the d-adic integers. In the rest of the paper, we deal with

d = 2, and so identify (and use interchangeably) the dyadic numbers and infinite binary

sequences (elements of ∂T ).

Remark 4.1.9. This definition can be extended from d-regular trees to spherically holo-

morphic trees (defined in e.g. [8]).
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4.2 The automaton computing the Log map

In this section we construct an automaton which computes the Log map of the previous

section in the case when A is bounded.

Here and afterwards, A is a bounded-activity (in the sense of Definition 2.1.4) tree

automorphism acting transitively on levels, and B is a tree endomorphism. An exam-

ple of such endomorphism is the odometer (also known as the adding machine), whose

automaton is shown in Figure 2.2a.

Remark 4.2.1. Any thee automorphism that acts transitively on levels is conjugate to the

odometer.

To proceed, we need a technical result:

Lemma 4.2.2. When A, B are tree endomorphisms given by finite automata, and A is

bounded and acts transitively on all levels, the set of sections

SA,B := {(B|w, Ad(w)|w, A2|w| |w) : w ∈ X∗}

is finite.

Proof. Let SB be the set of states of the automaton of B. Since Ad(w), A2|w||w ∈ TA,

|SA,B| ≤ SB · |TA|2,

where |TA| is finite by Prop 2.1.20. □

See Example 4.2.5 for an explicit computation of SA,B.

Theorem 4.2.3. Let A, B be as above. Consider the automaton L = LA,B with set of
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states SA,B , initial state (B, 1, A), and transition and output functions π and λ as follows:

π((β, γ, δ), a) := (β′, γ′, δ′),where

β′ = β|a

γ′ =


γ|a if β(a) = γ(a);

(γδ)|a, otherwise;

δ′ = δ2|a

λ((β, γ, δ), a) :=


0, if β(a) = γ(a);

1, otherwise.

Then the transition function is well-defined, and the automaton L outputs d(w) as a dyadic

integer:

d(w) =

|w|−1∑
i=0

D(w)i2
i.

Proof. We first show that upon reading a word w, the automaton L ends up in the state

(
B|w, Ad(w)|w, A2|w| |w

)
∈ SA,B.

This hypothesis holds for the empty word. We proceed by induction on |w|. Let

|w| = k, and let L be in the state (β, γ, δ) after reading in w.

Assume the hypothesis holds for w of length k.

To prove the inductive hypothesis, we let a ∈ X and show that

(β′, γ′, δ′) := π((β, γ, δ), a) =
(
B|wa, A

d(wa)|wa, A
2|wa||wa

)
.

Indeed:
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1. β′ = βa by definition, and

B|wa = (B|w)|a (by 2.1.12)

= βa

= β′.

2. Note that A2|w|
(w) = w by transitivity of A. By definition, δ′ = δ2|a = δ|δ(a)δ|a.

Now

A2|wa| |wa = A2|w|+1|wa

= (A2|w|
)2|wa

= A2|w| |
A2|w|

(wa)
A2|w| |wa (by 2.1.13)

= A2|w| |
A2|w|

(w)A2|w| |w(a)
(A2|w| |w)|a

= A2|w| |wδ(a)δ|a (by 2.1.12, inductive assumption, and A2|w|
= w)

= (A2|w||w)|δ(a)δ|a

= δ|δ(a)δ|a

= δ′.

3. By definition of d, B(w) = Ad(w)(w). Note that

B(wa) = B(w)B|w(a) = Ad(w)(w)β(a);

Ad(w)(wa) = Ad(w)(w)Ad(w)|w(a) = Ad(w)(w)γ(a).

If β(a) = γ(a), then B(wa) = Ad(w)(wa), and thus d(wa) = d(w) by definition of
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d. Otherwise, d(wa) = d(w)+2|w| since this is the only other possibility. Therefore,

Ad(wa) =


Ad(w), if β(a) = γ(a);

Ad(w)A2|w|
, otherwise.

Now we compute:

Ad(w)|wa = (Ad(w)|w)|a

= δ|a;

Ad(w)A2|w| |wa = Ad(w)|
A2|w|

(wa)
(A2|w||w)|a

= Ad(w)|
A2|w|

(w)A2|w| |w(a)
δ|a

= Ad(w)|wδ(a)δ|a

= (Ad(w)|w)|δ(a)δ|a

= γ|δ(a)δ|a

= (γδ)|a

Therefore

Ad(wa)|wa =


γ|a if β(a) = γ(a);

(γδ)|a otherwise.

This matches the definition of γ′, and thus γ′ = Ad(wa)|wa.

This completes the proof of the hypothesis that the automaton is in state
(
B|w, Ad(w)|w, A2|w||w

)
after reading w.

In particular, we have verified that the transition function π is well-defined, since its

values are always in the set SA,B.
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Furthermore, we observed that

d(wa) =


d(w), if β(a) = γ(a);

d(w) + 2|w| otherwise.

From this observation and the definition of λ, it follows by induction that

d(w) =

|w|−1∑
i=0

L(w)i2
i.

This completes the proof of the theorem. □

Proposition 4.2.4. When X , A and B are as in Theorem 4.2.3, and, additionally, B is

invertible, the automaton LA,B is a Moore machine (as in Definition 2.1.2).

Proof. By assumption, A is invertible, and so is Ad(w) for any w ∈ X∗. B is invertible by

assumption. By Prop. 2.1.11, their sections β = B|w and γ = Ad(w)|w are invertible, and

so is βγ−1.

Now Perm({0, 1}) = {bb1, σ}, so either βγ−1(x) = (x), or βγ−1(x) = σ(x).

In the first case, λ(β, γ, δ)(x) = 0 for x ∈ {0, 1}.

Otherwise, since σ has no fixed points, β(x) ̸= γ(x) and λ(β, γ, δ)(x) = 1 for x ∈

{0, 1}. □

Example 4.2.5. Let A be the adding machine, also known as the odometer (see Figure

2.2a) with states A and 1. Let automaton F have states {a, b, c} and initial state a as in

Figure 2.2b). We consider logA F .

Note that

A2|a = A|A(a)A|a = A,

since A|0A|1 = A|1A|0 = A. Therefore, A2n = A for all n ∈ N, and so SA,B ⊂
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{a, b, c} × {A, 1} × {A}. Consequently, |SA,B| ≤ 6.

Let’s compute the transition and the output function for LA,B. By Prop. 4.2.4, LA,B

is a Moore machine (the output λ(s, x) only depends on the state s), so we let * stand for

either 0 or 1 in what follows:

λ((a, 1, A), ∗) = 1

λ((a,A,A), ∗) = 0

λ((b, 1, A), ∗) = 1

λ((b, A,A), ∗) = 0

λ((c, 1, A), ∗) = 0

λ((c, A,A), ∗) = 1

We can use this to compute the transition function:

π((a, 1, A), 0) = (c, 1, A)

π((a, 1, A), 1) = (b, A,A)

π((a,A,A), 0) = (c, 1, A)

π((a,A,A), 1) = (b, A,A)

π((b, 1, A), 0) = (b, 1, A)

π((b, 1, A), 1) = (c, A,A)

π((b, A,A), 0) = (b, 1, A)

π((b, A,A), 1) = (c, A,A)

π((c, 1, A), 0) = (a, 1, A)

π((c, 1, A), 1) = (a, 1, A)

π((c, A,A), 0) = (a,A,A)

π((c, A,A), 1) = (a,A,A)

Since δ = A for all (β, γ, δ) ∈ SA,B , we omit it and write (β, γ) for (β, γ, A) for DA,B.

The automaton LA,B we have computed here is in in Figure 4.1.

Figure 4.1: Automaton LA,B when A is the odometer and B is automaton F . The output
from a state is the big number next to it.
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β and γ are both active Exactly one of β and γ
or both passive is active

π((β, γ), a) (β|a, γ|a) (β|a, (γA)|a)
λ((β, γ)) 0 1

Table 4.1: Transition and output functions of the automaton computing logA(B) when A
is the adding machine and B is invertible

△

Example 4.2.5 calls for a more efficient notation in the case when A is the adding

machine and B is invertible:

Corollary 4.2.6. Let A be the adding machine (the automaton shown in Figure 2.2a),

and assume B is invertible. Then δ = A for all (β, γ, δ) in the connected component of

(B, 1, A) in LA,B , and so can be omitted. After relabeling (β, γ, δ) → (β, γ) in LA,B

, we obtain the Moore machine L̂A,B with initial state (B, 1), and transition and output

functions π and λ as specified in Table 4.1.

Note: L̂ and L are, up to relabeling, the same automaton.

Proof. Observe that

A2|a = A|A(a)A|a = A,

since A|0A|1 = A|1A|0 = A. Since the initial state is (B, 1, A), it follows that the rest of

the states in the connected component of LA,B containing the initial state are of the form

(β, γ, A). Similarly, γ ∈ {1, A}.

The rest follows from the construction 4.2.3 and Prop. 4.2.4. Note that note that

β(x) = γ(x) for x ∈ X = {0, 1} if and only if when β and γ are both active or both

passive. □

Remark: in this case, one can see whether β, γ are active on the diagram of the

automatons B and A, respectively.
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λβ γ x π((β, γ), x) λ((β, γ), x)
1 1 0 (π(β, 0), 1) 0
1 1 1 (π(β, 1), 1) 0
σ A 0 (π(β, 0), 1) 0
σ A 1 (π(β, 1), A) 0
1 A 0 (π(β, 0), A) 1
1 A 1 (π(β, 1), A) 1
σ 1 0 (π(β, 0), 1) 1
σ 1 1 (π(β, 1), A) 1

Table 4.2: Table 4.1 written out explicitly

Remark 4.2.7. When B is invertible, and β ∈ S(B) is a state of B, the transition function

of B at β, λβ ∈ Perm(X) = {1, σ}. The Table 4.1 of Prop. 4.2.6 can be written out

explicitly: see Table 4.2.

Example 4.2.8. We compute the distance automaton when A is the odometer, and B is the

Bellaterra automaton (Figure 4.2). Using the new notation:

Figure 4.2: Bellaterra automaton

λ((a, 1)) = 0

λ((a,A)) = 1

λ((b, 1)) = 0

λ((b, A)) = 1

λ((c, 1)) = 1

λ((c, A)) = 0
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π((a, 1), 0) = (c, 1)

π((a, 1), 1) = (b, 1)

π((a,A), 0) = (c, A)

π((a,A), 1) = (b, A)

π((b, 1), 0) = (b, 1)

π((b, 1), 1) = (c, 1)

π((b, A), 0) = (b, A)

π((b, A), 1) = (c, A)

π((c, 1), 0) = (a, 1)

π((c, 1), 1) = (a,A)

π((c, A), 0) = (a, 1)

π((c, A), 1) = (a,A)

△

We obtain the automaton L̃ in Figure 4.3a).

(a) LA,B

(b) The delayed automaton σLA,B is invertible

Figure 4.3: Constructions for the case of A-adding machine, B-Bellaterra

4.3 Distribution of lengths of chords

The measure we are interested in is µ = µA,B := logA(B)∗ν, where ν is the uniform

Bernoulli measure on T .

The measure gives the distribution of the displacement function: for d - a finite dyadic

integer written in binary as w = w0 . . . wn−1 (and thus interpreted as an element of
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Z/2nZ),

µ(wXN) = |{v ∈ Xn : logA,n(B)(v) = d}|.

Figure 2.4 illustrates the graphs of action with the cycle generated by the adding ma-

chine A put on a circle, and the edges corresponding to the action of the other automaton

being chords in that circle, motivating the title of this section.

There is an easy sufficient condition for µ to be not only Markov, but uniform Bernoulli

on a cylinder. To state it, we need to make several definitions:

Definition 4.3.1: σ : XN → XN is the shift, defined by σ(aw) = w for w ∈ XN.

Definition 4.3.2: when L is a Moore machine, the delayed automaton σL is the

automaton that computes σ ◦ L. It has the same states, initial state and the transition

function as L, and the output function σλ given by

σλ(s, x) = λ(π(s, x)),

which is well-defined when L is a Moore machine.

Remark 4.3.3. When L is Moore, for any finite word w ∈ X∗ and x ∈ X ,

L(wx) = L(0)σL(w) = L(1)σL(w).

Proposition 4.3.4. Let X be a finite alphabet. Let L be a Moore machine with initial state

s0, and let a = λ(s0). Let ν be the uniform Bernoulli measure on XN.

Then µ = L∗ν is supported on the cylinder aXN, and µ|a = (σL)∗ν. If σL is invert-

ible, µ|a is uniform Bernoulli (i.e. µ|a = ν).

Proof. By 3.2.2, µ(aXN) = 1 when L is Moore. Now by µa = (L∗ν)|a = (σL)∗ν, since
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for all v ∈ X∗,

(σL)∗ν(vX
N) = ν

(
(σL)−1(vXN)

)
= ν

(
L−1(σ−1

(
(vXN)

))
= ν

(
L−1

(⊔
x∈X

xvXN

))

= ν
(
L−1(avXN)

)
= L∗v

(
avXN

)
= (L∗v)|a(vXN) (since L∗ν(aX

N) = 1).

Thus (σL)∗ν = (L∗ν)|a.

If σL is invertible, (σL)∗ν = ν by 3.2.3. This completes the proof. □

Corollary 4.3.5. Let X , A, B and LA,B be as in Prop 4.2.3 (so B is invertible, and LA,B

is Moore). Let ν be the uniform Bernoulli measure on X∗.

Then µ = logA(B)∗ν is supported on L(0)XN, and µ|L(0 = ν.

Example 4.3.6. WhenA is the adding machine, andB is the Bellaterra automaton (of Fig.

4.2), L(0) = L(1) = 0. The delayed automaton σL is in Figure 4.3b, and it is invertible

(but not minimal: can be reduced to an automaton with 5 states).

Therefore, µ = logA(B)∗ν is the uniform Bernoulli measure supported on 0XN, i.e.

µ|0 = ν and µ|1 = 0. △

Prop 4.3.4 demonstrates that when B is invertible, the delayed automaton σLA,B can

be useful for examining µA,B. We make use of it again for what follows:

Example 4.3.7. Let ν be the uniform Bernoulli measure. For A - the adding machine, and

B - automaton F (see Figure 2.2b), the measure µ = logA(B)∗ν is finite-state. Furthre-

more, µ|0 = 0, and automaton in Figure 4.5 computes µ|1.
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Proof. By Prop 4.3.4 and the already computed L = LA,B in Fig 4.1, µ|0 = 0, and the

measure is supported on 1XN, with µ|1 = (σL)∗ν. We thus point our attention to σL,

shown in Figure 4.4a.

First, observe that the automaton σL is not minimal. After identifying states (a, 1) and

(a,A) into state a, and identifying states (b, 1) and (b, A) into state b, we obtain a minimal

automaton L (Figure 4.4b).

(a) σLA,B

(b) σLA,B minimized.

Figure 4.4: Automatons σLA,B and its minimization when B is automaton F

Let us use the names of the states a, b, (c, 1) and (c, A) for the respective actions of the

automaton when the corresponding state is chosen as the initial one. Then logA(B) = a.

If g is an action on the tree T , we write µg for g∗ν. Thus we are interested in µa = µ =

a∗ν = (σL)∗ν, and we compute it by writing down its sections in terms of µa, µb, µc,1 and

µc,A.

We apply Corollary 3.2.2 to L to obtain the sections by one character:
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µa|0 =
µb + µc,1

2

µa|1 = 0

µb|0 = 0

µb|1 =
µb + µc,A

2

µc,1|0 = 0

µc,1|1 = µa

µc,A|0 = µa

µc,A|1 = 0

µa(0X
N) = 1

µa(1X
N) = 0

µb(0X
N) = 0

µb(1X
N) = 1

µc,1(0X
N) = 0

µc,1(1X
N) = 1

µc,A(0X
N) = 1

µc,A(1X
N) = 0

Having expressed the sections by one character in terms of each other, we have ob-

tained a set of recursive relations which allows us to compute sections by arbitrary words.

To find the set of all sections, we proceed by repeatedly computing sections using Prop.

2.2.8. We find:

µb + µc,1

2
|0 = 0

µb + µc,1

2
|1 =

µb + µc,A + 2µa

4
µb + µc,A

2
|0 = µa

µb + µc,A

2
|1 =

µb + µc,A

2

µb + µc,1

2
(0XN) = 0

µb + µc,1

2
(1XN) = 1

µb + µc,A

2
(0XN) =

1

2
µb + µc,A

2
(1XN) =

1

2
And again:

µb + µc,A + 2µa

4
|0 =

µa + µb + µc,1

3
µb + µc,A + 2µa

4
|1 =

µb + µc,A

2

µb + µc,A + 2µa

4
(0XN) =

3

4
µb + µc,A + 2µa

4
(1XN) =

1

4
Finally:
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µa + µb + µc,1

3
|0 =

µb + µc,1

2
µa + µb + µc,1

3
|1 =

µb + µc,A + 2µa

4

µa + µb + µc,1

3
(0XN) =

2

3
µa + µb + µc,1

3
(1XN) =

1

3
Since we have obtained no new sections at this step, the sections so far are all the

sections of µ. We have all the data now to build the automaton in Figure 4.5 that computes

µ|1. □

Figure 4.5: Automaton that computes µA,B|1 for A - odometer, B - automaton F

It should be noted that µA,B , while being quasi-finite-state, is not necessarily finite-

state:

Example 4.3.8. Let A be the adding machine, and B be the Lamplighter automaton; see

Figure 4.6. We show that the measure µ is not finite-state.
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Figure 4.6: The lamplighter automaton

λ((a, 1)) = 1

λ((a,A)) = 0

λ((b, 1)) = 0

λ((b, A)) = 1

π((a, 1), 0) = (a, 1)

π((a, 1), 1) = (b, A)

π((a,A), 0) = (a, 1)

π((a,A), 1) = (b, A)

π((b, 1), 0) = (a, 1)

π((b, 1), 1) = (b, 1)

π((b, A), 0) = (a,A)

π((b, A), 1) = (b, A)

The computed automata LA,B and σLA,B are in Figures 4.7a and 4.7b, respectively.

Since (b, 1) is not reachable from the initial state (a, 1), it is omitted in Figure 4.7b.

The automaton in that figure is not minimal; states (a, 1) and (a,A) can be identified.

The minimized automaton is shown in Figure 4.7c; the relabeling is a = (a, 1) = (a,A),

b = (b, A), and (b, 1) is discarded since as unreachable from the initial state a.

Noting that µA,B is supported on 1XN (by Prop. 4.3.4), we now point our attention to

the measure µ̃ = µA,B|1. Using Corollary 3.2.2 for the minimized σL in Figure 4.7c and

the notation of Example 4.3.7:

µa|0 = 0

µa|1 =
1

2
(µa + µb)

µb|0 = µa

µb|1 = µb

µa(0X
N) = 0

µa(1X
N) = 1

µb(0X
N) =

1

2

µb(1X
N) =

1

2
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(a) LA,B

.
(b) σL; states unreachable from the ini-
tial state (a, 1) not shown

.

(c) σL minimized
.

Figure 4.7: L = LA,B for A-adding machine, B-lamplighter.

Now let µ0 := µa and µn := µn−1|1. Again we use Prop. 2.2.8:

µ1 =
(µa + µb)

2

µ2 = µ1|1 =
1

2

(
µa|1 +

µb|1
2

)
/µ1

(
1XN

)
=

(µa + 2µb)

4
· 4
3

=
(µa + 2µb)

3

µ3 =
(µa + 3µb)

4

. . .
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We have the following:

Proposition 4.3.9.

µn =
µa + nµb

n+ 1

µn(0X
N) =

n

2(n+ 1)

µn(1X
N) =

n+ 2

2(n+ 1)

Proof. By induction. The proposition holds for n = 1. Assuming it holds for k = n,

µk+1 = µk|1 =
1

k + 1

(
µa + µb

2
+

1

2
kµb

)
/

(
k + 2

2(k + 1)

)
=
µa + (k + 1)µb

k + 2
. □

Note that measures µn are all distinct.

Corollary 4.3.10. µA,B is not finite-state when A is the adding machine and B is Lamp-

lighter.

Corollary 4.3.11. µn for n = 0, 1, 2, . . . are all the nontrivial sections of µ̃.

Proof. This immediately follows from observing that µn|0 = µ0 for n > 0:

µn|0 =
µa + nµb

n+ 1
|0 =

1

n+ 1

nµa

2

2(n+ 1)

n
= µa = µ0.

The (infinite) automaton that computes µ̃ is shown in Figure 4.8. △

Observe that the computations in these examples are almost linear. To make this notion

precise:
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Figure 4.8: The infinite automaton computing µ̃A,B for A-adding machine, B-lamplighter.

Proposition 4.3.12. Let X = {x0, . . . , xk−1} be a finite alphabet, L be a Mealy machine

with states S = {g0, . . . , gn−1}, v = (a0, a1, . . . , an−1), ai ∈ R, and ν - a Bernoilli

measure given by vector p = (p0, . . . , pk−1). Let

µv =
n−1∑
i=0

aigi∗ν.

Then for x ∈ X there exists a matrix Mx : Rn2 → [0, 1] and a vector px : Rn → [0, 1]

such that

µv|x = µw

with

w =
Mxv

px.v
.
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The entries of Mx and px are given by

Mx(i, j) =
∑

y:π(gi,y)=gj and λ(gi,y)=x

p(y);

px(j) =
n−1∑
i=0

Mx(i, j).

Proof. From 3.2.2 and 2.2.8:

(
n∑

i=0

aigi∗ν

)∣∣∣∣∣
x

=

n∑
i=0

aigi∗ν(xX
N)(gi∗ν)|x

n∑
i=0

aigi∗ν(xX
N)

=

n∑
i=0

ai
∑

y∈λ−1
gi

(x)

p(y)π(gi, y)∗ν

n∑
i=0

ai
∑

y∈λ−1
gi

(x)

p(y)

.

The proposition follows.

Corollary 4.3.13. Let

ϕx(v) :=
Mxv

px · v
.

Then µv is finite-state if and only if the orbit of v under the action of ϕx : x ∈ X is finite.

The graph of action is the transition diagram of the automaton that computes µ[v].

The above corollary can be made simpler once we consider v as an element of RPn.

For v = (a1, . . . , an), write [v] = [a0 : a1 : . . . an−1] ∈ RPn, and write

µ[v] :=
µv

µv (XN)
.
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This is well-defined, and

[ϕx(v)] = [Mxv].

Corollary 4.3.14. µ[v] is finite-state if and only if the orbit of [v] under the action of the

free semigroup generated by ⟨Mx : x ∈ X⟩ is finite.

In the special case ν - uniform Bernoulli measure, it is convenient to use M̃x(i, j) with

entries

M̃x(i, j) =
∑

y:π(gi,y)=gj and λ(gi,y)=x

1.

Similarly, set p̃x = |X|px. By definition, M̃x = |X|Mx, [M̃xv] = [Mxv], and ϕx(v) =

M̃xv/p̃x · v. However, M̃x have integer entries: Mx(i, j) ∈ {0, 1, . . . , |X|}.

Corollary 4.3.15. When ν- uniform Bernoulli, µ[v] is finite-state if and only if the orbit of

[v] under the action of the free semigroup of integer matrices ⟨M̃x : x ∈ X⟩ is finite.

Example 4.3.16. When L = LA,B , where A is the adding machine, and B is automaton

F , we have M̃0 and M̃1 as follows:

M̃0 =



0 0 0 2

1 0 0 0

1 0 0 0

0 0 0 0


p̃0 = (2, 0, 0, 2)

ϕ0(v) = M̃0v/p̃0 · v
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M̃1 =



0 0 2 0

0 1 0 0

0 0 0 0

0 1 0 0


p1 = (0, 2, 2, 0)

ϕ1(v) =M1v/p1 · v

The orbit of (1, 0, 0, 0) under the action of ⟨ϕ0, ϕ1⟩ is

((0, 0, 0, 0), (0, 1/2, 0, 1/2), (0, 1/2, 1/2, 0), (1/3, 1/3, 1/3, 0), (1/2, 1/4, 0, 1/4), (1, 0, 0, 0)).

These correspond to the states in Figure 4.5.

Equivalently, the orbit of [1 : 0 : 0 : 0] under the action of ⟨M̃0, M̃1⟩ is

([0 : 0 : 0 : 0] : [0 : 1 : 0 : 1] : [0 : 1 : 1 : 0] : [1 : 1 : 1 : 0] : [2 : 1 : 0 : 1] : [1 : 0 : 0 : 0]).

△

Example 4.3.17. When L = LA,B with A-adding machine, and B - Lamplighter, we have

M̃0 =

 0 1

0 0

 M̃1 =

 1 0

1 1


The orbit of [1 : 0] under the action of M̃1 is {[1 : n] : n ∈ N}, and is not finite. △

4.4 When the measure is Markov

Having obtained the automaton that computes a measure, we can ask the question of

what kind of measure it is. Here, we specialize Theorem 3.4.1 to the images of Bernoulli
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measures under the automatic logarithm map.

Theorem 3.4.1 is illustrated by the following:

Example 4.4.1. When A is the odometer and B is automaton F , measure µA,B is the

3-step Markov measure defined in Table 4.3. The admissible words for measure µA,B are

all words not containing 000 or 1101. For all admissible w, |mu|w is determined by its

suffix of length 3. △

w ends in µ|w
00

µ|b + µ|c,1
2

11
µ|b + µ|c,A

2

01
µ|b + µ|c,A + 2µa

4
110 µa

010
µa + µ|b + µ|c,1

3

Minimal forbidden words: 000, 1101.

Table 4.3: µA,B as a Markov measure when B is automaton F

Proof. We know it is k-step Markov for some k < 21, since the automaton M in Figure

4.5 satisfies the conditions of Theorem 3.4.1. The result follows from examining M . □
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5. Images of Markov measures

In this chapter, we turn to examining images of Markov measures under the action

of tree endomorphisms, generalizing an approach (due to Kravchenko) that involves con-

structing a certain lifting.

This approach is different from the one in Section 3.2, and yields some insights not

readily available with the approach of that section, such as absolutely continuity when g is

polynomial-activity.

Note that a strongly-connected tree automorphism, in general, is not polynomial-

activity: if the graph of the automaton contains two disjoint cycles, the activity is ex-

ponential. Therefore, we consider these two cases separately.

From here onwards, we assume the automorphisms and the automata are all finite-state.

5.1 Outline

Let X be a finite alphabet, and (XN,B, µ) a probability measure space such that

the shift σ : XN → XN is a probability-preserving transformation. If σ is an ergodic

probability-preserving transformation on (XN,B, µ), Birkhoff’s Pointwise Ergodic Theo-

rem is a tool that can be used to calculate frequencies: for almost all w ∈ XN and x ∈ X ,

freq(x) = lim
n→∞

n−1∑
k=0

χx ◦ σk(w) =

∫
χxdµ,

where χx is the characteristic function on the cylinder xXN, and the left hand side of the

equation is the frequency of x.

Example 5.1.1. let X = {0, 1}, and µ be a Bernoulli measure defined by the probability

vector q = (p, 1 − p). On the cylinders, µ is given as follows: µ(0wXN) = pµ(wXN)

and µ(1wXN) = (1− p)µ(wXN) for any finite word w, and µ(XN) = 1. △
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This measure can be understood as a (stochastic) process of flipping a coin, possibly

biased, which gives heads with probability p. One would expect to get freq(0) = p; and

indeed, by the ergodic theorem we have almost everywhere:

freq(0) =

∫
χ0dµ = µ(0XN) = pµ(XN) = p.

We then may ask the question: how do actions on the space affect frequencies? A

natural object that acts on infinite sequences is a Mealy machine: an initial finite-state

automaton with output, so we restrict our attention to the action w 7→ gw given by an

automaton transformation, and examine

lim
n→∞

n−1∑
k=0

χx ◦ σk(gw).

The case for µ - a Bernoulli process (on a two-letter alphabet) was solved by Ryabinin

in [2], and for µ - a Bernoulli measure on a finite alphabet was answered by Kravchenko

in [3]. We generalize these result to the case of µ - a Markov measure.

5.2 Automorphisms of polynomial activity

In the polynomial activity case, the pushforward of any non-atomic measure (measures

ν such that ν(S) = 0 for any countable set S) is easy to find. This comes from the

following lemmas:

Lemma 5.2.1. let A = (X,S, π, λ) be a strongly connected automaton, and g(w) :=

λ(g, w) as above. A nontrivial simple cycle through s ∈ S is a path in A that starts and

ends in s and consists of nontrivial states. Then g has polynomial activity only if there do

not exist two distinct nontrivial cycles through any state s ∈ S.

Proof. suppose that there exists a state s with two distinct cycles, defined by input words
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a and b, through it:

s
a1−−−−→

λ(s,a1)
s1

a2−→
y2

. . .
an−−−−−→

λ(sn,an)
sn+1 = s;

s
b1−−−−→

λ(s,b1)
t1

b2−→
y2

. . .
bm−−−−−→

λ(sm,bm)
tm+1 = s.

Furthermore, note that since A is strongly connected, there exists a path defined by an

input word wgs that goes from g to s.

Consider words w of the form

w = wgsA1A2 . . . A2n,

where Ai ∈ {a, b}, and where a occurs n times (i.e. |{i : Ai = a}| = n). All these words

have the same length:

|wgsA1A2 . . . A2n| = |wgs|+ n(|a|+ |b|),

and this length is linear in n.

However, there are at least 2n distinct such words. Indeed, there are 2n distinct words

in the alphabet {a, b}; it suffices to show that they give distinct words in X .

Since input words a and b define distinct paths in A, there exist i, j such that si ̸= tj .

Given an input word w, define a function F : XN → {0, 1}N as follows:

F (wx) =


F (w)0, if π(s, wx) = si;

F (w)1, if π(s, wx) = tj;

F (w)otherwise.
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That is, F simply writes down 0 when si is encountered, and 1 when tj is encountered

while going along the path defined by w.

Let R be the rewriting of a word in alphabet {a, b} in X . Then F ◦ R is injective by

the assumption that si and tj are distinct states such that si is not on the path defined by b,

and tj is not on the path defined by a. Therefore, R must be injective as well.

Finally, we note that restriction of g to w is nontrivial, since π(g, w) = s, a nontrivial

state.

We thus produced, for arbitrary n, at least 2n words w of length |wgs+n(|a|+ |b|) such

that g|w is nontrivial; by definition, this implies exponential activity. The lemma holds by

contradiction. □.

Lemma 5.2.2. A−1 has polynomial activity whenever A has polynomial activity.

Proof. this is by definition from the following observation:

g|w ̸= 1 ⇔ g−1|g(w) ̸= 1.

(In other words, if g leaves suffixes of w unchanged, so does g−1).

Lemma 5.2.3. (Kravchenko) Let V , Vmax be given by

V = {w ∈ XN : g−1|w = 1}

Vmax = {w ∈ V : w = vw′, |w′| > 0 ⇒ v /∈ V }.

Then µ is supported on ⊔v∈VmaxvX
N.

That is, V is the set of words giving trivial sections, and words in Vmax are words in V

whose proper prefixes are not in V (i.e. yield non trivial sections). In a tree diagram of the
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automorphism g−1, v ∈ Vmax if next-to-last node on the path given by v is a switch node,

and there are no switches in its subtree.

Proof. First, note that the cylinders vXN are disjoint for v ∈ Vmax: if v1XN and v2XN

intersect, than either v1 starts with v2, or v2 starts with v1 - neither is possible by construc-

tion. Therefore, the union of sets vXN for v ∈ Vmax is disjoint.

Now, to prove the lemma, we show that

W = XN − ∪v∈VmaxvX
N

is at most countable. Indeed, let w ∈ W . Then the path in the statues of that automaton

of g−1 defined by w must consist of nontrivial states: if π(g, w1w2w3 . . . wn) is a trivial

state, then so are all the subsequent states on the path defined by w, and so g−1|w1w2...wn is

trivial.

By assumption, A (and thus A−1) is finite, and so the path in A−1 defined by w must

pass through some non-trivial state s infinitely often. By Lemma 5.2.2, A−1 has polyno-

mial activity. There, Lemma 5.2.1 applies, and so there is at most one nontrivial cycle

passing through s. Therefore w is eventually periodic. The set of such words is countable.

Since for Markov measures, µ(S) = 0 when S is countable, the lemma follows. □

To proceed further, we introduce a technical definition. Given a measure µ and an

automorphism g, we say g is µ-Vmax-compatible if µ(vXN) ̸= 0 for all v ∈ Vmax.

If µ is a Markov measure induced by a matrix L, this means that all paths in the

automaton of restrictions g that lead to a trivial state must be induced by words w that are

not forbidden in L (i.e. Lwiwi+1
> 0 for i = 0..|w| − 1).

We can now show the following:

Theorem 5.2.4. Let µ be a Markov measure induced by L, l, and g - an automorphism of

polynomial activity. If g is µ-Vmax-compatible, then g∗µ is absolutely continuous w.r.t. µ,
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with the derivative given by

dg∗µ

dµ
=

∑
v∈Vmax,a∈X

µ(g−1(vX∞)

µ(vX∞)

L(g−1(v)|v|, a)

L(v|v|, a)
χvaXN .

Proof. note that the above expression is well-defined iff g is µ-Vmax-compatible.

Now, extending the approach of Kravchenko to Markov measures, let

g′ =
∑

v∈Vmax,a∈X

µ(g−1(vX∞))

µ(vX∞)

L(g−1(v)|v|, a)

L(v|v|, a)
χvaXN .

By construction, the measure g′dµ is supported on cylinder sets vXN, for v ∈ Vmax. From

Lemma 5.2.3, it suffices to show that dg∗µ and g′dµ agree on these cylinder sets for the

theorem to hold.

Since both measures are continuous, the above will follow if

∫
wXN

g′dµ =

∫
wXN

dg∗µ

for all w ∈ V .

Now, if w ∈ V , then either w ∈ Vmax, or w = vaw′ where v ∈ Vmax and a ∈ X . In

the latter case:
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∫
wxN

g′dµ =
µ(g−1(vXN))

µ(vXN)

L(g−1(v)|v|, a)

L(v|v|, a)
µ(vaw′XN)

=
µ(g−1(vXN))

µ(vXN)

L(g−1(v)|v|, a)

L(v|v|, a)

· l(v1)L(v1, v2) . . . L(v|v|−1, v|v|) · L(v|v|, a) · L(a, w′
1) . . . L(w

′
|w′|−1, w

′
|w′|)

=
µ(g−1(vXN))

µ(vXN)

L(g−1(v)|v|, a)

L(v|v|, a)
· µ(vXN) · L(v|v|, a) · L(a, w′

1) . . . L(w
′
|w′|−1, w

′
|w′|)

= µ(g−1(vXN))L(g−1(v)|v|, a) · L(a, w′
1) . . . L(w

′
|w′|−1, w

′
|w′|)

= µ(g−1(v)aw′XN) = µ(g−1(vaw′XN)) (5.1)

= µ(g−1(wXN))

=

∫
wxN

g∗µ.

In the above, equality 5.1 follows from the assumption that v ∈ Vmax, and therefore

g−1(vaw′) = g−1(v)aw′

for all w′.

Now that we have verified that g′dµ and dg∗µ agree on cylinders wXN for w ∈ V , the

theorem holds.□

5.3 Subexponential case

It is known that finite-state automorphisms have either polynomial, or exponential ac-

tivity.

However, the result of the Theorem 5.2.4 also holds in the case of g ∈ Aut T , g – not
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finite-state, having subexponential activity, i.e. g satisfying the following condition:

|{w : |w| = n, g|w ̸= 1}| < Cn for all C > 1.

Indeed, a more general version of Lemma 5.2.3 holds:

Lemma 5.3.1. The conclusion of Lemma 5.2.3 holds in the subexponential case.

Proof. all we need to demonstrate is that µ(XN − ⊔v∈VmaxvX
N) = 0. Let Vn = {w :

|w| = n, g|w ̸= 1}. Following [Grigorchuk-Dudko], let

Mn = µ(⊔w∈VnwX
N),

and let Lmax = maxLij < 1. Then

Mn ≤ |Vn|max{µ(wXN) : w ∈ Vn}

< |Vn|Ln
max.

For w ∈ XN, w ̸= vw′ for some v ∈ Vmax if and only if w1w2 . . . wn ∈ Vn for n = 1..|w|,

and so

µ(XN − ⊔v∈VmaxvX
N) = lim

n→∞
Mn = 0

by the definition of subexponential activity of an automaton.□

Aside from Lemma 5.2.3, the proof of Theorem 5.2.4 does not depend on whether g

has polynomial activity or not; all that matters is that the conclusion of Lemma 5.2.3 holds.

Therefore, we have:

Corollary 5.3.2. The conclusion of Theorem 5.2.4 holds in the subexponential case.

Remark 5.3.3. Finite automata with sub-exponential activity always have polynomial ac-
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tivity. The result above applies to automorphisms which are not given by finite automata.

5.4 Strongly-connected automata

The measure given by µ is invariant and ergodic. Naively, one could hope that the au-

tomaton action preserves this, and Birkhoff’s Pointwise Ergodic Theorem could be applied

directly by a change of variable in the integral:

freq(x) = lim
n→∞

n−1∑
k=0

χx ◦ σk(gw)
?
=

∫
χxdg∗µ.

However, the pushforward measure g∗µ is not a-priori invariant and ergodic, and the mea-

sure is not easy to deal with directly. On the cylinders, it is given by

g∗µ(y1y2 . . . ynX
N) =

∑
g

x1−→
y1

s1
x2−→
y2

...
xn−→
yn

sn

l(g)L(g, x1)L(x1, x2) . . . L(xn−1, xn),

where the summation is over all paths g x1−→
y1

s1
x2−→
y2

. . .
xn−→
yn

sn in the automaton.

To address this difficulty, we keep track of the states A goes through along with the

output. We will define maps to obtain a commutative diagram:

XN g - g(XN) ⊂ XN

(S ×X)N

λ̃
--

⊂

π̃
g

-

with g∗µ = λ̃∗π̃g∗µ. We then define an invariant, ergodic measure Q on XN which is a

pushforward of a Markov measure under the 1-block factor map λ̃ such that g∗µ≪ Q. We

are then able to apply the pointwise ergodic theorem with respect to measure Q, and the

result will hold for µ-almos-all input words w.
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Let π̃ : S ×XN → (S ×X)N be given by

π̃(g, xw) = (g, x)π̃(π(g, x), w),

and write π̃g(w) := π̃(g, w).

Given a sequence π̃(g, w) ∈ (S × X)∞, we can extract the output g(w) = λ(g, w)

simply by looking at the states; so we define λ̃ : (S ×X)∞ → X∞ recursively by

λ̃((s, x)w) = λ(s, x)λ̃(w)

for w ∈ (S ×X)∞.

That is, for each path

g
x1−→
y1

s1
x2−→
y2

. . .
xn−→
yn

sn

we have

π̃g(x1x2 . . . xn) = (g, x1)(s1, x2) . . . (sn−1, xn);

λ̃(s0, x1)(s1, x2) . . . (sn−1, xn) = y1y2 . . . yn.

By construction, we have λ̃◦ π̃g(w) = g(w), and thus have the commutative diagram from

the previous section.

The measure π̃g∗µ on (S ×X)N) is easier to work with then the pushforward g∗µ on
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XN. On the cylinders, it is given as follows:

π̃g∗µ((g, x1)(s1, x2) . . . (sn−1, xn)(S ×X)∞) =

=


l(x1)Lx1x2 . . . Lxn−1xn , if g

x1−→
y1

s1
x2−→
y2

. . .
xn−→
yn

sn is a path ;

0, otherwise.

This is almost a Markov measure! The product matches a Markov measure except for the

first term, l(xi). It is piecewise-Markov, scaled by constants on cylinders (s, x)(S×X)∞).

To make this statement more precise, let T = TL,A be a transition matrix with entries

indexed by elements of S ×X , and values given by

T(s0,x0)(s1,x1) =


L(x0, x1), if π(s0, x0) = s1;

0, otherwise.

T then is an stochastic matrix:

∑
(t,y)

T(s,x)(t,y) =
∑
y

L(x, y) = 1,

since for T(s,x)(t,y) ̸= 0, t must be uniquely given by t = π(s, x).

Example 5.4.1. Let X = {0, 1, 2}, µ be induced by the matrix

L =


1/2 1/2 0

0 1/2 1/2

1/2 0 1/2

 ,

and let A have the transition function given by the diagram in Figure 5.1.

Note that 02 is a forbidden word in the subshift defined by L (that is, µ(02XN) =
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Figure 5.1: Any path from A to C ends in 02

0).However, the only arrow going into B is labeled by 0. Therefore, T has a zero column

at (C, 2), and so the Markov measure induced by it is not irreducible. △

The example above calls for a restriction on A that would make T irreducible.

Definition 5.4.2: we call an automaton A L-strongly-connected, if for every pair of

states s, t ∈ S and every pair of symbols x, y ∈ X , there exists word w ∈ X∗ such that

π(s, xw) = t, and xwy is not a forbidden word in the subshift defined by the nonzero

entries of L (that is, if w = w1 . . . wn, then Lx,w1 , Lwn,y, and Lwi,wi+1
for i = 1..n− 1 are

all nonzero).

Lemma 5.4.3. The Markov chain defined by T is irreducible if and only if the atutomaton

A is L-strongly connected.

Proof. this follows directly from the definitions given above.

Let t be the stationary probability vector of T , so tT = t, which exists since T is

irreducible; and let P be the associated Markov measure. Then on the cylinders, P is

given by

P ((s0, x0) . . . (sn, xn)(S ×X)∞) =



t((s0, x0))T(s0,x0)(s0,x1) . . . T(sn−1,xn−1)(sn,xn)

= t((s0, x0))Lx0x1 . . . Lxn−1xn ,

if S0
x0−→
y0

. . .
xn−→
yn

sn+1 is a path ;

0, otherwise.
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The measure P is ergodic, since T is irreducible. Furthermore, its definition starts

to look like the value of π̃g∗µ on the cylinders. Now we can make precise the statement

about π̃g∗µ being piecewise-Markov. Note that the vectors l and t are positive, as they are

stationary probability vectors of ergodic Markov chains [7]. Therefore, on the cylinders

Ωg,x = (g, x)(S ×X)N, we have:

P ((g, x)w(S ×X)N) =
t(g, x)

l(x)
π̃g∗µ(w(S ×X)N),

that is,

π̃g∗µ|Ωg,x =
l(x)

t(g, x)
P |Ωg,x

and since π̃g∗µ is supported on Ωg,x,

π̃g∗µ =
∑
x

l(x)

t(g, x)
P |Ωg,x .

From this observation we have the following:

Lemma 5.4.4. π̃g∗µ≪ P .

The measure we are interested in, g∗µ, is given as a pushforward: g∗µ = λ̃∗π̃g∗µ.

We now set Q := λ̃∗P . After observing that Q is invariant, ergodic, and g∗µ≪ Q, we

are able to apply the Birkhoff Pointwise Ergodic theorem with the measure Q to compute

the frequencies, and state that the result holds almost everywhere w.r.t measure µ.

Lemma 5.4.5. Q is an invariant, ergodic measure whenever P is.

Proof. these properties are carried over by projections which commute with the shift. Note
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that the following diagram commutes:

(S ×X)N
σ- (S ×X)N

XN

λ̃

?? σ - XN

λ̃

??

Therefore,

Q(σ−1S) = P (λ̃−1(σ−1S))

= P (σ−1(λ̃−1(S)))

= P (λ̃−1(S) since P is invariant by assumption

= Q(S),

so Q is invariant.

For ergodicity, we need to show that whenever σ−1(E) = E, Q(E) = 0 or 1. If E is

shift-invariant (σ−1(E) = E), then so is λ̃−1(E):

λ̃−1(E) = λ̃−1(σ−1(E)) = σ−1(λ̃−1(E)),

where the last equality follows from the commutative diagram above. Now

Q(E) = P (λ̃−1(E)) = 0 or 1,

since P is ergodic, and λ̃−1(E) is shift-invariant. □

Lemma 5.4.6. g∗µ≪ Q

Proof. since g∗µ = λ̃∗π̃g∗µ, and Q = λ̃∗P , it suffices to verify that π̃g∗µ ≪ P . But this
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was shown in Lemma 5.4.4. □

Finally we have the following:

Theorem 5.4.7. Let L be a stochastic matrix defining an irreducible Markov measure µ,

A - an L-strongly-connected automaton with initial state g, TL,A - the stochastic matrix

defined above. Then for all x ∈ X and almost all w ∈ XN:

lim
n→∞

1

n

n∑
k=1

χxσ
n(gw) =

∑
s0

y0−→
x

s1

t(s0, y0),

where t is the stationary distribution vector of TL,A.

Proof. we have shown the measure Q to be invariant and ergodic. Following Kravchenko:

by Pointwise Birkhoff Ergodic theorem, for Q-almost all v ∈ XN,

lim
n→∞

1

n

n∑
k=1

χxσ
n(v) =

∫
XN

χx dQ

= Q(xXN)

= (λ̃∗P )(xX
N)

=
∑

s0
y0−→
x

s1

t(s0, y0).

Let V ⊂ XN be the set of sequences for which the above does not hold. Since g∗µ ≪ Q,

g∗µ(V ) = 0 as well. Therefore, for g∗µ-almost all v ∈ XN:

lim
n→∞

1

n

n∑
k=1

χxσ
n(v) =

∑
s0

y0−→
x

s1

t(s0, y0).
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Now we let v = g(w). The above equation becomes

lim
n→∞

1

n

n∑
k=1

χxσ
n(g(w)) =

∑
s0

y0−→
x

s1

t(s0, y0), (5.2)

and it holds for µ-almost all w (if W is the set of w ∈ XN for which 5.2 does not hold,

then W = g−1(V ), and µ(W ) = µ(g−1(V )) = g∗µ(V ) = 0). □

The above theorem immediately generalizes to frequencies of words w. Indeed, re-

placing x ∈ X with u = u0u1 . . . uk−1 ∈ Xk, we obtain:

Corollary 5.4.8. Let µ, g, T , etc. be as in Theorem 5.4.7. Then

lim
n→∞

1

n

n∑
k=1

χuσ
n(gw) =

∑
s0

x0−→
w0

s1...
xk−1−−−→
wk−1

sk

t(s0, x0)
k−1∏
j=1

T(sj−1,xj−1)(sj ,xj)

for µ-almost-all w ∈ XN (where χu = χ(uXN)).

Proof. as in the proof of Theorem 5.4.7,

lim
n→∞

1

n

n∑
k=1

χxσ
n(v) =

∫
XN

χx dQ

= Q(xXN)

= (λ̃∗P )(uX
N)

=
∑

s0
x0−→
w0

s1...
xk−1−−−→
wk−1

sk

t(s0, x0)T(s0,x0)(s1,x1) . . . T(sk−2,xk−2)(sk−1,xk−1).

The rest of the proof applies without change. □

Example 5.4.9. LetX = {0, 1}, A be automaton F with initial state a (already considered
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in Section 3.2), and let L define a Bernoulli measure with probabilities (1/3, 2/3):

L =

 1/3 2/3

1/3 2/3

 A =

Then T , t and l are as follows:

T =



0 0 1
3

2
3

0 0

0 0 0 0 1
3

2
3

0 0 0 0 1
3

2
3

0 0 1
3

2
3

0 0

1
3

2
3

0 0 0 0

1
3

2
3

0 0 0 0


,

t =

(
1
9

2
9

1
9

2
9

1
9

2
9

)
.

l =

(
1
3

2
3

)
.

and the frequencies of 0 and 1 in the output are 5/9 and 4/9, respectively. △

Kravchenko observed in [3] that in the case of Bernoulli measures, the vector t can be

written as t = r ⊗ l, where l is the 1-dimensional distribution of the measure, and r is the

stationary probality vector of a chain defined by a matrix S × S → R which depends on

A and l. In the example above,

t =

(
1
3

1
3

1
3

)
⊗
(

1
3

2
3

)
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With this automaton, this will happen for all matrices L generating a Markov measure.

Example 5.4.10. When A is automaton F , as above, and L is a stochastic matrix, so

L =

 p 1− p

q 1− q

 ,

the vector t′ = (q, 1− p, q, 1− p, q, 1− p) is an eigenvector of T with eigenvalue 1, so

t =
1

3(1− p+ q)
(1, 1, 1)⊗ (q, 1− p).

In general, this will not be the case.

Example 5.4.11. Let X = {1, 2, 3}, and L, A (with initial state a) be given as follows:

L =


1
2

1
2

0

0 1
2

1
2

1
2

0 1
2

 A =

Then A is L-strongly-connected, and we have
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T =



0 0 0 1
2

1
2

0 0 0 0

0 0 0 0 1
2

1
2

0 0 0

1
2

0 1
2

0 0 0 0 0 0

1
2

1
2

0 0 0 0 0 0 0

0 1
2

1
2

0 0 0 0 0 0

0 0 0 0 0 0 1
2

0 1
2

0 0 0 0 0 0 1
2

1
2

0

0 1
2

1
2

0 0 0 0 0 0

0 0 0 0 0 0 1
2

0 1
2



t =

(
2
15

2
15

1
5

1
15

2
15

1
15

2
15

1
15

1
15

)
l =

(
1
3

1
3

1
3

)
.

The frequencies of 0, 1 and 2 in aw for w ∈ XN are (4/15, 1/3, 2/5), respectively, for

µ-almost all w.

In this case, t ̸= v ⊗ l for any vector v.

Note that if we modified A, for example, by making π(a, 2) = a, then A would no

longer be L-strongly-connected: since L1,3 = µ(13XN) = 0, this modification discon-

nects (a, 1) and (b, 3) in the graph defined by nonzero entries of T . In this case, t is not

positive:

t =

(
2
9

2
9

1
3

1
9

1
9

0 0 0 0

)
.

△

This example shows that in the case of Markov measures, t cannot depend only on
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A and l, like in the case of Bernoulli measures. For a Bernoulli measure with the same

1-dimensional distribution, t would be be positive.

5.4.1 Singularity

In the case of subexponential activity, g∗µ is absolutely continuous with respect to µ.

For tree automorphisms generated by strongly-connected automata, this is not necessarily

the case. In [3], Kravchenko considers a sufficient condition for g∗µ and µ to be singular

when µ is a Markov measure. We reproduce his argument, fixing a technical error.

First, let us define K to be a matrix S × S → R with entries given by

Ks,s′ :=
∑

π(s,x)=s′

l(x),

and let k be is its stationary probability vector (kK = k,
∑
ki = 1).

Theorem 5.4.12. Suppose µ is a Bernouli measure with probability vector p, and g is

a strongly-connected tree automorphism. Supppose that there exist x, y ∈ X such that

p(y) = max p, p(x) < p(y), and for some state s, λ(s, x) = y. Then µ and g∗µ are

singular.

Proof. in the case of Bernoulli measures, the vector t falls apart as a tensor product:

t = k ⊗ p : t(s, x) = k(s)p(x)

where p is the probability vector of the Bernoulli measure, and k is the stationary proba-

bility vector of the Markov chain generated by K defined above (see [3], Lemmas 4 and

5).
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Let x, y, s be as above. Then the frequency of y in under g∗µ is

lim
n→∞

1

n

n∑
k=1

χyσ
n(gw) =

∑
s

y−→
x′

s′

t(s, x′) =
∑
s

y−→
x′

s′

q(s)p(x′)

< p(y)
∑
s

y−→
x′

s′

q(s)

= p(y)
∑
s∈S

q(s)

= p(y),

which is the frequency of y under µ. As a consequence of the ergodic theorem, g∗µ and µ

are singular.

□

If g is trivial, or p = (1/|X|, . . . , 1/|X|), then g∗µ = µ. However, it is not sufficient

for g to be nontrivial and p ̸= (1/|X|, . . . , 1/|X|) for g∗µ and µ to be singular.

Example 5.4.13. Let X = {1, 2, 3}, µ - a Bernoulli measure with probability vector

p = {1/2, 1/4, 1/4}, and let g be generated by an automaton with a single state s with

π(s, x) = s for x ∈ X , λ(g, 1) = 1, λ(g, 2) = 3, λ(g, 3) = 2. Then g∗µ = µ. △

This is a counter-example to Theorem 10 of [3], where the listed conditions were

insufficient to guarantee singularity, and shows that additional conditions are needed.

In spite of Example 5.4.11, there are many cases when the vector t falls apart as a

tensor product. In particular, we show the following:

Lemma 5.4.14. Supppose that A is such that for any s ∈ S and x ∈ X , there is s′ ∈ S

such that π(s′, x) = s. Then k = 1
|S|(1, 1, 1, . . . , 1), and t = k ⊗ l.

Proof. the condition forces s′ to be unique, by pigeonhole principle.
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Therefore, if the condition holds, the columns of K sum to 1, and so (1, . . . , 1)K =

(1, 1, . . . , 1). Normalizing by the sum, we obtain

k =
1

|S|
(1, 1, . . . , 1).

To show the second part, note that the columns of T then have exactly |X| nonzero

entries: for any x ∈ X ,T(s′,x)(s,y) = L(x, y) only for the unique s′ such that π(s′, x) = y.

Then, for all s ∈ S and y ∈ X ,

|S|k ⊗ l · T ,(s,y) = (l1, l2, . . . , l|X|, . . . , l1, l2, . . . , l|X|) · T ,(s,y)

=
∑
s′∈S

∑
x∈X

lx ·


L(x, y), if π(s′, x) = y;

0, otherwise

=
∑
x∈X

lxL(x, y)

= ly.

Therefore, k ⊗ l · T ,(s,y) =
1
|S| ly, and

k ⊗ l · T =
1

|S|
(l1, l2, . . . , l|X|, . . . , l1, l2, . . . , l|S|) = k ⊗ l.

Since ∑
s∈S

∑
x∈X

(k ⊗ l)(s,x) =
∑
s∈S

(∑
x∈X

lx
S

)
=
∑
s∈S

1

S
= 1,

k ⊗ l is the stationary vector of T , and the result follows. □

Definition 5.4.15: The automata for which the condition of Lemma 5.4.14 holds are

called reversive automata.

We thus have the following
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Corollary 5.4.16. Suppose A is reversive, or µ is Bernoulli. Then t = k ⊗ l.

Since the proof of Theorem 5.4.12 follows from t = k ⊗ l, we obtain a more general

version for Markov measures:

Theorem 5.4.17. Suppose A is reversive, or µ is Bernoulli. If l ̸= 1
|X|(1, 1, . . . , 1), then µ

and g∗µ are singular.

5.5 Examples on a 2-letter alphabet

Example 5.5.1. In the examples that follow, X = {0, 1}, and L is in general form:

L =

 1− p p

q 1− q

 ,

l is the stationary vector of L (lL = L and
∑
li = 1), so l =

(
q

p+q
, p
p+q

)
, and µ is the

Markov measure induced by L. K is a matrix S × S → R defined by

Ks,s′ :=
∑

π(s,x)=s′

l(x)

and k is its stationary probability vector (kK = k,
∑
ki = 1). As before, T is given by

T(s0,x0)(s1,x1) =


L(x0, x1), if π(s0, x0) = s1;

0, otherwise,

and t is its stationary probability vector (tT = t,
∑
ti = 1).

Finally, f is the vector of frequencies under the action of A (with any starting state):

fx = lim
n→∞

1

n

n−1∑
m=0

χxXNσmw

93



for µ-almost all w (σ is the shift).

5.5.1 The automaton F

This is a generalization of Example 5.4.9 to an arbitrary Markov chain on a 2-letter

alphabet. This is a reversive automaton (in fact, bireversive: its dual is reversive), and so

t = k ⊗ l.

K =


0 p

p+q
q

p+q

0 q
p+q

p
p+q

1 0 0


a c

0|1

b1|0

0|0

1|1

1|0

0|1

k =

(
1
3

1
3

1
3

)

T =



0 0 0 0 1− p p

0 0 q 1− q 0 0

0 0 1− p p 0 0

0 0 0 0 q 1− q

1− p p 0 0 0 0

q 1− q 0 0 0 0


t =

(
q

3(p+q)
p

3(p+q)
q

3(p+q)
p

3(p+q)
q

3(p+q)
p

3(p+q)

)
k ⊗ l =

(
q

3(p+q)
p

3(p+q)
q

3(p+q)
p

3(p+q)
q

3(p+q)
p

3(p+q)

)
f =

(
2p+q
3(p+q)

p+2q
3(p+q)

)
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5.5.2 Bellaterra

Since the Bellaterra automaton is the product of automatonF with an automaton that

switches 0 and 1, the entries of f are switched, and the rest stays the same:

K =


0 p

p+q
q

p+q

0 q
p+q

p
p+q

1 0 0


a c

0|0

b1|1

0|1

1|0

1|1

0|0

k =

(
1
3

1
3

1
3

)

T =



0 0 0 0 1− p p

0 0 q 1− q 0 0

0 0 1− p p 0 0

0 0 0 0 q 1− q

1− p p 0 0 0 0

q 1− q 0 0 0 0


t =

(
q

3(p+q)
p

3(p+q)
q

3(p+q)
p

3(p+q)
q

3(p+q)
p

3(p+q)

)
k ⊗ l =

(
q

3(p+q)
p

3(p+q)
q

3(p+q)
p

3(p+q)
q

3(p+q)
p

3(p+q)

)
f =

(
p+2q
3(p+q)

2p+q
3(p+q)

)
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5.5.3 Lamplighter

The Lamplighter automaton is interesting in that the output frequencies don’t depend

on the input frequencies. This is again a reversive automaton.

K =

 q
p+q

p
p+q

p
p+q

q
p+q

 a

0|1

b1|0
0|0

1|1

k =

(
1
2

1
2

)

T =



1− p p 0 0

0 0 q 1− q

0 0 1− p p

q 1− q 0 0


t =

(
q

2(p+q)
p

2(p+q)
q

2(p+q)
p

2(p+q)

)
k ⊗ l =

(
q

2(p+q)
p

2(p+q)
q

2(p+q)
p

2(p+q)

)
f =

(
1
2

1
2

)

Note: even though the frequencies of individual characters don’t depend on p and q, this

is not the case for words of length 2. The input and output frequencies are as follows:

Word: 00 01 10 11

Input frequency: q−pq
p+q

pq
p+q

pq
p+q

p−pq
p+q

Output frequency: q
2(p+q)

p
2(p+q)

p
2(p+q)

q
2(p+q)
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5.5.4 Case when t ̸= k ⊗ l

This can happen even with a 2-character alphabet. This automaton differs from Aleshin

only by one arrow, but that change made the automaton non-reversive.

K =


0 1 0

0 q
p+q

p
p+q

1 0 0


a

b
0|1

1|0

0|1

c

1|0

0|0

1|1

k =

(
p

3p+q
p+q
3p+q

p
3p+q

)

T =



0 0 1− p p 0 0

0 0 q 1− q 0 0

0 0 1− p p 0 0

0 0 0 0 q 1− q

1− p p 0 0 0 0

q 1− q 0 0 0 0


t =

(
− pq(p+q−2)

qp2+(2q2−3q+3)p+(q2−3q+3)q

p(q2+(p−2)q+1)
qp2+(2q2−3q+3)p+(q2−3q+3)q

q(p2+(2q−3)p+q2−3q+3)
qp2+(2q2−3q+3)p+(q2−3q+3)q

p
qp2+(2q2−3q+3)p+(q2−3q+3)q

pq
qp2+(2q2−3q+3)p+(q2−3q+3)q

p−pq
qp2+(2q2−3q+3)p+(q2−3q+3)q

)
k ⊗ l =

(
pq

(p+q)(3p+q)
p2

(p+q)(3p+q)
q

3p+q
p

3p+q
pq

(p+q)(3p+q)
p2

(p+q)(3p+q)

)
f =

(
p(q2+(p−1)q+2)

qp2+(2q2−3q+3)p+(q2−3q+3)q

p(q−1)2+(q2−3q+3)q
qp2+(2q2−3q+3)p+(q2−3q+3)q

)
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5.6 Reversive automata

Recall that an automaton is reversive (Def. 5.4.1) if it satisfies the condition of Lemma

5.4.14: if one can arrive to any state by any letter of the alphabet. Equivalently, that means

that X acts on the states of the automaton as a group (by x · g = π(g, x)).

An immediate corollary of Theorem 5.4.7 and Lemma 5.4.14 is the following

Corollary 5.6.1. Let g, A, k, l, µ, etc. be as before. If A is reversive, then for all x ∈ X

and almost all w ∈ XN:

lim
n→∞

1

n

n∑
k=1

χxσ
n(gw) =

∑
s0

y0−→
x

s1

k(s0)l(y0).

These automata act on bi-infinite sequences w : Z → X . To define the action, for a

reversive automaton A, let Â be the automaton obtained by reversing the arrows in A, i.e.

πA(s, x) = t⇔ πÂ(t, x) = s

λA(s, x) = y ⇔ λÂ(π(s, x), x) = y.

This is well-defined when A is reversive; we call Â the reverse of A.

As before, we can extend πÂ, λÂ to X−N: for w ∈ X−N and x ∈ X , define

π̂(s, wx) = π̂(πÂ(s, x), w);

λ̂(s, wx) = λ̂(πÂ(s, x), w).

Now we can extend π = πA to w ∈ XZ: for w = . . . w−1w0w1 . . ., set

π(w) := π̂(. . . w−2w−1w0)π(w0w1w2 . . .).
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Theorem 5.4.7 holds in this setting as well, after being reformulated for bi-infinite

sequences:

Theorem 5.6.2. If A is reversive, then

lim
n→∞

1

2n+ 1

(
n∑

k=1

χxσ
n(gw) +

n∑
k=1

χxσ
−n(gw)

)
=

∑
s0

y0−→
x

s1

k(s0)l(y0).

5.7 When the pushforward is Gibbsian

A sofic measure is an image of a Markov measure under a projection. Thus, by defini-

tion, the measure Q is sofic.

It is interesting to consider when Q belongs to a class that lies between sofic and

Markovian measures: the so-called Bowen-Gibbs measures. Recall (from definition 2.2.1)

that these are measures ν such that for some C,P ∈ R (C > 0) and all w ∈ Xnn,

1

C
<

ν(w0 . . . wn−1X
N)

exp(−nP +
∑n−1

i=0 f(σ
iw))

< C.

Chazottes and Ugalde have provided in [9] a sufficient condition for an image of a

Markov measure under a factor map to be Gibbsian (we follow a rephrasing in [10]):

Theorem 5.7.1 (Chazotte, Ugalde). LetA andB be mixing 1-step one-sided shifts of finite

type. Let ϕ : A→ B be a one-block factor map with the following properties:

• for a 2-block b1b2 in B × B, a letter a1 ∈ A such that ϕ(a1) = b1 can be extended

to a two-block a1a2 in X ×X such that ϕ(a1a2) = b1b2;

• given a periodic point b ∈ B with period m less than or equal to the number of

letters appearing inB, any pair of letters a0, am−1 mapping to b0, bm−1, respectively,

can be extended to a word a0, . . . am−1 of length m that maps to b0, . . . , bm−1.
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Then ϕ∗µ is a Gibbs measure.

In our setup, A is the subshift of (S ×X)N defined by nonzero entries of T , B is the

full shift XN, and ϕ = λ̃.

Since B is the full shfit, B is 1-step and mixing.

A is mixing whenever the automaton A is µ-strongly-connected.

The map λ̃ : (S × X)N → XN is induced by the map λ, which is as a map from the

alphabet S ×X to alphabet X . Therefore, λ̃ is, in fact, a 1-block factor map.

The first condition translates to the following: for every sequence y1y2, and for every

(s1, x1) such that λ(s1, x1) = y1, there exists (s2, x2) such that:

• π(s1, x1) = s2;

• λ(s2, x2) = y2;

• L(x1, x2) > 0.

Note that the first two conditions are satisfied whenever the automaton A is invertible by

setting s2 = π(s1, x1) and x2 = λ−1
s2
(y2). The addition of the third condition is satisfied

by making A µ-strongly-connected.

The second condition of is satisfied trivially for binary alphabets, i.e. when |X| = 2.

The sufficient conditions of [9] translate to the following corollary:

Corollary 5.7.2. LetX be a binary alphabet, and letA be invertible, µ-strongly connected

automaton.

Then Q is Gibbsian.

This condition is not satisfied for non-invertible automata.

LetX = 0, 1. Consider an automatonAwith four states,A,B,C,D, which is a Moore

machine (i.e. its output only depends on the current state), where A,B output 0, and C,D

output 1, and the transition is given by A→1 B →0 C →0 D →0 A.
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Then the matrix in the condition of Chazottes and Ugalde has zero rows.

In [10], Yoo has shown that if h : X∞ → Y ∞ is a 1-block factor map (i.e. induced by

a map h : X → Y ), a sufficient condition for h∗µ to be Gibbsian is the following:

Theorem 5.7.3 (Yoo). If there is a k such that for every pair u, v ∈ Xk satisfying h(u) =

h(v), there is w ∈ Xk such that h(u) = h(v) = h(w), with w1 = u1 and wk = vk, then

h∗µ is Gibbsian.

In our case, we have the map λ̃ : (S × X)N → X∞. The the condition becomes the

following: for every two paths with the same output:

s1
x1−→
y1

s2 . . . sn
xn−→
yn

ŝ1
x̂1−→
y1

s2 . . . ŝn
x̂n−→
yn

there must exist a path

s′1
x′
1−→

y1
s′1 . . . s

′
n

x′
n−→

yn

with (s′1, x
′
1) = (s1, x1), and (s′n, x

′
n) = (ŝn, x̂n).

IfA is invertible, two paths from the same initial state differ in the first output character

already. The only way the condition can be satisfied is if all paths of length n that give the

same output end up in the same state (for some n).
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6. Concluding remarks and open problems

Finite-state measures are an interesting class that naturally generalizes Markov mea-

sures in a different way than Gibbs measures do (a finite-state measure may, but need not

be Gibbs). The connections between automata, finite-state, and Gibbs measures lead to

the following open questions:

1. Are there non-unifixed finite-state measures that are still Gibbs?

2. What can the measure µ induced by the automatic logarithm tell us about the struc-

ture of the Schreier graph? What specifically can be said in the cases when it is finite

state?

3. What can be said about the images of Gibbs measures under the action of finite

automata?

4. Describe the images of finite-state measures under the action of non-invertible tree

endomorphisms;

5. Study the relationship between quasi-finite-state measures and other classes of mea-

sures.
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APPENDIX A

MEALY AUTOMATA PRODUCT AND MINIMIZATION

Here we present a Java class to represent Mealy automata, along with methods to

obtain products, inverse, and minimization.

The implementation is for input alphabet X coinciding with output alphabet Y , but

can be easily adapted for the case when they differ, as the algorithms stay the same.

p u b l i c c l a s s MealyAutomaton {

/ * *

* Number o f s t a t e s o f t h i s au tomaton

* /

i n t s i z e ;

/ * *

* I n p u t a l p h a b e t . Shouldn ' t o v e r l a p .

* /

S t r i n g [ ] a l p h a b e t ;

S t r i n g [ ] l a b e l s ;

i n t [ ] [ ] t r a n s i t i o n ;

i n t [ ] [ ] o u t p u t ;

S t r i n g name ;

p u b l i c MealyAutomaton ( S t r i n g name , S t r i n g [ ] a l p h a b e t , S t r i n g [ ]

l a b e l s ,

i n t [ ] [ ] t r a n s i t i o n , i n t [ ] [ ] o u t p u t ) {

t h i s . name = name ;

t h i s . a l p h a b e t = a l p h a b e t ;

t h i s . l a b e l s = l a b e l s ;
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t h i s . t r a n s i t i o n = t r a n s i t i o n ;

t h i s . o u t p u t = o u t p u t ;

t h i s . s i z e = t r a n s i t i o n . l e n g t h ;

}

p u b l i c s t a t i c i n t [ ] actOn ( MealyAutomaton M, i n t s t a r t _ s t a t e , i n t [ ]

i n p u t )

{

i n t [ ] ans = new i n t [ i n p u t . l e n g t h ] ;

/ / System . o u t . p r i n t (M. l a b e l s [ s t a r t _ s t a t e ] ) ;

f o r ( i n t i =0 ; i < i n p u t . l e n g t h ; i ++) {

ans [ i ] = M. o u t p u t [ s t a r t _ s t a t e ] [ i n p u t [ i ] ] ;

s t a r t _ s t a t e = M. t r a n s i t i o n [ s t a r t _ s t a t e ] [ i n p u t [ i ] ] ;

/ / System . o u t . p r i n t (M. l a b e l s [ s t a r t _ s t a t e ] ) ;

}

/ / System . o u t . p r i n t l n ( ) ;

r e t u r n ans ;

}

s t a t i c S t r i n g c a t ( S t r i n g a , S t r i n g b ) {

/ / r e t u r n a + b ;

r e t u r n ( a . e q u a l s ( " I " ) ) ? b : ( b . e q u a l s ( " I " ) ) ? a : a+b ;

}

s t a t i c MealyAutomaton m u l t i p l y ( MealyAutomaton A, MealyAutomaton B) {

i f ( ! Ar r ay s . e q u a l s (A. a l p h a b e t , B . a l p h a b e t ) ) { r e t u r n n u l l ; }

e l s e {

S t r i n g name = A. name +" _x_ " + B . name ;

S t r i n g [ ] a l p h a b e t = A. a l p h a b e t ;
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i n t s i z e = A. s i z e * B . s i z e ;

S t r i n g [ ] l a b e l s = new S t r i n g [ s i z e ] ;

i n t [ ] [ ] t r a n s i t i o n = new i n t [ s i z e ] [ ] ;

i n t [ ] [ ] o u t p u t = new i n t [ s i z e ] [ ] ;

f o r ( i n t i =0 ; i <A. s i z e ; i ++) {

f o r ( i n t j =0 ; j <B . s i z e ; j ++) {

i n t k = i *B . s i z e + j ;

o u t p u t [ k ] = new i n t [ a l p h a b e t . l e n g t h ] ;

t r a n s i t i o n [ k ] = new i n t [ a l p h a b e t . l e n g t h ] ;

f o r ( i n t c =0; c< a l p h a b e t . l e n g t h ; c ++) {

o u t p u t [ k ] [ c ] = A. o u t p u t [ i ] [ B . o u t p u t [ j ] [ c ] ] ;

i n t j 2 = B . t r a n s i t i o n [ j ] [ c ] ;

i n t i 2 = A. t r a n s i t i o n [ i ] [ B . o u t p u t [ j ] [ c ] ] ;

t r a n s i t i o n [ k ] [ c ] = i 2 *B . s i z e + j 2 ;

}

l a b e l s [ k ] = c a t (A. l a b e l s [ i ] , B . l a b e l s [ j ] ) ;

}

}

r e t u r n new MealyAutomaton ( name , a l p h a b e t , l a b e l s ,

t r a n s i t i o n , o u t p u t ) ;

}

}

s t a t i c MealyAutomaton i n v e r s e ( MealyAutomaton A) {

S t r i n g [ ] a l p h a b e t = A. a l p h a b e t ;

i n t s i z e = A. s i z e ;

S t r i n g [ ] l a b e l s = new S t r i n g [ s i z e ] ;

i n t [ ] [ ] t r a n s i t i o n = new i n t [ s i z e ] [ ] ;

i n t [ ] [ ] o u t p u t = new i n t [ s i z e ] [ ] ;
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f o r ( i n t i =0 ; i <A. s i z e ; i ++) {

o u t p u t [ i ] = new i n t [ a l p h a b e t . l e n g t h ] ;

t r a n s i t i o n [ i ] = new i n t [ a l p h a b e t . l e n g t h ] ;

f o r ( i n t c =0; c< a l p h a b e t . l e n g t h ; c ++)

{

t r a n s i t i o n [ i ] [A. o u t p u t [ i ] [ c ] ] =

A. t r a n s i t i o n [ i ] [ c ] ;

o u t p u t [ i ] [A. o u t p u t [ i ] [ c ] ] = c ;

}

l a b e l s [ i ] = A. l a b e l s [ i ]+ " _ " ;

/ / l a b e l s [ i ] = A. l a b e l s [ i ]+" _ inv " ;

/ / l a b e l s [ i ] = A. l a b e l s [ i ] + " * " ;

}

r e t u r n new MealyAutomaton ( a l p h a b e t , l a b e l s , t r a n s i t i o n ,

o u t p u t ) ;

}

p u b l i c MealyAutomaton min imize ( ) {

i n t [ ] c o l o r = new i n t [ s i z e ] ;

f o r ( i n t i =0 ; i < s i z e ; i ++) { c o l o r [ i ] = 0 ; }

f i n a l i n t MAX_COLS = s i z e * 2 ; / / we might have up t o 2 x s i z e

c o l o r s r e s e r v e d , b u t no more

i n t [ ] s u c c _ c o l o r = new i n t [MAX_COLS ] ;

Ar r a y s . f i l l ( s u c c _ c o l o r , −1) ;

s u c c _ c o l o r [ 0 ] = 1 ;

i n t c o l o r _ c o u n t = 1 ;

i n t n e x t _ f r e e _ c o l o r = 2 ;
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i n t [ ] r e p s = new i n t [MAX_COLS ] ; / / aga in , c o l o r l a b e l s might

go as h igh as 2 x s i z e

Ar ra y s . f i l l ( r eps , −1) ;

r e p s [ 0 ] = 0 ;

b o o l e a n [ ] c o l o r _ s p l i t = new b o o l e a n [MAX_COLS ] ;

b o o l e a n [ ] t a g g e d _ f o r _ r e c o l o r = new b o o l e a n [ s i z e ] ;

b o o l e a n mismatch_found = t r u e ;

w h i l e ( mismatch_found ) {

mismatch_found = f a l s e ;

f o r ( i n t i =0 ; i < s i z e ; i ++) {

i n t r e p = r e p s [ c o l o r [ i ] ] ;

b o o l e a n i n _ r i g h t _ c l a s s = t r u e ;

i n t c ;

f o r ( c = 0 ; i n _ r i g h t _ c l a s s && ( c < a l p h a b e t . l e n g t h ) ;

c ++) {

i n _ r i g h t _ c l a s s = i n _ r i g h t _ c l a s s

&& ( o u t p u t [ r e p ] [ c ] == o u t p u t [ i ] [ c ] )

&& ( c o l o r [ t r a n s i t i o n [ r e p ] [ c ] ] ==

c o l o r [ t r a n s i t i o n [ i ] [ c ] ] ) ;

}

i f ( ! i n _ r i g h t _ c l a s s ) {

t a g g e d _ f o r _ r e c o l o r [ i ] = t r u e ;

}

}

/ / r e c o l o r t h e mismatched nodes

f o r ( i n t i =0 ; i < s i z e ; i ++) {

i f ( t a g g e d _ f o r _ r e c o l o r [ i ] ) {

t a g g e d _ f o r _ r e c o l o r [ i ] = f a l s e ;
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c o l o r _ s p l i t [ c o l o r [ i ] ] = t r u e ;

c o l o r [ i ] = s u c c _ c o l o r [ c o l o r [ i ] ] ;

r e p s [ c o l o r [ i ] ] = i ;

}

}

/ / f i x s u c c e s s o r c o l o r s and u p d a t e c o l o r c o u n t

f o r ( i n t i =0 ; i < MAX_COLS; i ++) {

i f ( c o l o r _ s p l i t [ i ] ) {

s u c c _ c o l o r [ s u c c _ c o l o r [ i ] ] = n e x t _ f r e e _ c o l o r ;

n e x t _ f r e e _ c o l o r ++;

s u c c _ c o l o r [ i ] = n e x t _ f r e e _ c o l o r ;

n e x t _ f r e e _ c o l o r ++;

c o l o r _ s p l i t [ i ] = f a l s e ;

mismatch_found = t r u e ;

c o l o r _ c o u n t ++;

}

}

}

/ / f i r s t , g roup used c o l o r s i n t o an a r r a y , and b u i l d a r e v e r s e

i n d e x

i n t [ ] u s e d _ c o l o r s = new i n t [ c o l o r _ c o u n t ] ; / / s t o r e a l l c o l o r s

used i n t h e graph ,

Ar r a y s . f i l l ( u s e d _ c o l o r s , −1) ; / / i . e . such t h a t

t h e r e ' s a t l e a t one node of t h a t c o l o r

i n t [ ] c o l o r _ i n d e x = new i n t [MAX_COLS ] ; / / r e v e r s e i n d e x :

g i v e n c o l o r , g i v e i t s i n d e x

Ar ra y s . f i l l ( c o l o r _ i n d e x , −1) ; / / i n t h e

u s e d _ c o l o r s a r r a y
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i n t c a r e t = 0 ;

f o r ( i n t i =0 ; i < MAX_COLS; i ++) {

i f ( r e p s [ i ] > −1){

u s e d _ c o l o r s [ c a r e t ] = i ;

c o l o r _ i n d e x [ i ] = c a r e t ;

c a r e t ++;

}

}

/ / now b u i l d l a b e l s , t r a n s i t i o n and o u t p u t ( t h e a l p h a b e t i s t h e

same )

S t r i n g [ ] n e w _ l a b e l s = new S t r i n g [ c o l o r _ c o u n t ] ;

i n t [ ] [ ] new_outpu t = new i n t [ c o l o r _ c o u n t ] [ ] ;

i n t [ ] [ ] n e w _ t r a n s i t i o n = new i n t [ c o l o r _ c o u n t ] [ ] ;

f o r ( i n t i =0 ; i < u s e d _ c o l o r s . l e n g t h ; i ++) {

new_outpu t [ i ] = new i n t [ a l p h a b e t . l e n g t h ] ;

n e w _ t r a n s i t i o n [ i ] = new i n t [ a l p h a b e t . l e n g t h ] ;

f o r ( i n t c = 0 ; c < a l p h a b e t . l e n g t h ; c ++) {

new_outpu t [ i ] [ c ] = o u t p u t [ r e p s [ u s e d _ c o l o r s [ i ] ] ] [ c ] ;

n e w _ t r a n s i t i o n [ i ] [ c ] =

c o l o r _ i n d e x [ c o l o r [ t r a n s i t i o n [ r e p s [ u s e d _ c o l o r s [ i ] ] ] [ c ] ] ] ;

}

n e w _ l a b e l s [ i ] = l a b e l s [ r e p s [ u s e d _ c o l o r s [ i ] ] ] ;

}

r e t u r n new MealyAutomaton ( a l p h a b e t , new_ la be l s ,

n e w _ t r a n s i t i o n , new_outpu t ) ;

}

}
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