Problem 1 Find the domain of the following function:

$$f(x) = \frac{1}{\sqrt{x-3}} \cdot \frac{x^2+1}{x^2-25}$$

Additional problem(s): Find the domain of f in these cases:

- $f(x) = \frac{1}{\sqrt{|x-3|-7}}$ (Solution: $(-\infty, -4) \cup (7, \infty)$) • $f(x) = \frac{1}{x^2+1} \cdot \frac{\sqrt{9-x^2}}{x^2-4}$
- $f(x) = \sin\left(\frac{\log\left(\sqrt{3-x}\right)}{3+x}\right)$

Problem 2

a. Sketch the graph of the following piecewise-defined function:

b. Is this function continuous?

c. Sketch the graph of 2f(x-2) on the left [4 points], and graph of $f^{-1}(x)$ on the right

Problem 3 You and your friend attended a show of the famous band Klein Four. After the show ended, you bought 7 records, and your friend bought 4. Your total expenses were \$125, and your friend's expenses totaled \$80.

The ticket prices are the same, and all records cost the same. Build a model of the cost of attendance of the show. Interpret the slope and y-intercept of the function you get.

Problem 4 Let f, g be functions whose domain is $(-\infty, +\infty)$. The values of f and g for some values of x are given in the table below:

Х	1	2	3	4	5
f(x)	3	3	3	3	2
g(x)	1	6	10	5	3

- a. What is $f \circ g(5)$?
- b. What is $g \circ f(5)$?
- c. Is f one-to-one?
- d. Is g one-to-one?
- e. Additional problem(s):
 - Let h be a function whose domain is $\{1, 2, 3, 4, 5\}$, and h(x) = g(x) wherever defined. Is h one-to-one?

Problem 5 The population of fruit flies around the bananas in your kitchen (that you totally forgot about) doubles every 36 hours. There are 10 flies buzzing happily now.

- a. How many fruit flies will you have in three days?
- b. What is the function f(x) that describes the number of flies you have after x hours?

Problem 6 Constant hyperinflation in the country of Artztozka decreases the value of savings in Artztozkan Grubles (as measured in USD) by a factor of 0.8 every 18 months. You just purchased \$1000 worth of Arztztozkan Grubles.

- a. What will be the value of your investment in 2 years?
- b. Arztotzkan (never-changing) president swore to resign if an investment into Grubles depreciates to 10% of its initial value in USD. How many years will pass before you are able to call him out on that fake promise?

Problem 7 You measure velocity of a falling water balloon, in m/s, in terms of time passed, in s, since you dropped it from the rooftop of the mathdepartment towards your favorite math professor.

t, s	1	1.5	2	2.5	3
V, m/s	14	20	23	28	35

It seems like the constant pull of gravity yields a linear model. Use linear regression to determine the model.

Problem 8 The x coordinate of the tip of the second clock hand, in cm, is given by the equation $x(t) = 15 \sin(2\pi t/60)$.

a. Find the average velocity V_{ave} on the following intervals I:

1.
$$I = [30, 32].$$

Solution: $V_{\text{ave}} = \frac{x(32) - x(30)}{2} = ...$
2. $I = [30, 30.5], V_{\text{ave}} = ...$
3. $I = [30, 30.1], V_{\text{ave}} = ...$
4. $I = [30, 30.01]$

b. What the instantaneous horizontal velocity at t = 30s?

Problem 9 Let $f(x) = x^2$. Calculate (or approximate to 4 decimal places) the following limit:

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

for a = 7.

Problem 10 Calculate (or approximate to 4 decimal places) the following limit:

$$\lim_{x \to \infty} \frac{2x^3 + 5x + 1}{3x^4 + 5x^2 + 7}.$$

Problem 11 Let $f(x) = \sin(x)$, where x is in degrees, so f(30) = 0.5.

- a. For the following intervals $I_a = (0.5 a, 0.5 + a)$, find intervals J_b of the form (30 b, 30 + b) so that f takes values in I_a on the interval J_b you find.
 - 1. $a = 0.02, I_a = (0.52, 0.48);$
 - 2. $a = 0.001, I_a = (0.501, 0.499);$

b. Let g(x) be defined as follows:

$$g(x) = \begin{cases} f(x), x \neq \frac{\pi}{4}; \\ 0, x = \frac{\pi}{4}. \end{cases}$$

Find the limit $\lim_{x \to 4} g(x)$, or state that it does not exist.