MATH 131:501 Exam 3 practice

Your name: _____

April 21, 2016

Problem 1: Let f(x) be a differentiable function on \mathbb{R} . Some values of f'(x) are given in the table below.

x	0	1	2	3	4
f'(x)	0	5	6	3	1

Assuming f(0) = 0, approximate f(4).

Problem 2: Let $f(x) = e^{x^2}$.

- 1. Approximate the area under the graph of f on [0, 2] by a **right** Riemann sum with 7 equally-spaced rectangles.
- 2. Approximate the area under the graph of f on [0, 2] by a **left** Riemann sum with 7 equally-spaced rectangles.
- 3. Which of these is an over / underestimate? Justify your answer.

Problem 3: Find the area under the curve $f(x) = \sin(x)$ for x between 0 and π .

Problem 4: the velocity of a particle at time t, in seconds, is given by $f(t) = t^3$, in m/s. Find the net change in position...

- 1. ... when t goes from 0 to 2
- 2. if p(t) is the function that gives the position, what is p'(3)?

Problem 5: Let F(T) be the area under the curve of $f(t) = t^2$ from t = 0 to t = T. For T between 0 and 4, where is F changing the fastest?

Problem 6: Find the indefinite integrals:

$$\int 5x^3 + \cos(x) + 3dx =$$
$$\int \sin(x^2) 2x dx =$$
$$\int \frac{1}{x} + \frac{1}{x^2} + \sqrt{x} =$$

Problem 7: What is the largest (by area) isosceles triangle with perimeter 30?

Problem 8: Let $f(x) = 4x^7 - 35 \cdot 7x^4 + 27 \cdot 8 \cdot 28x$ be a function on the interval [1.5, 4].

- 1. Find all the critical points, classify them as local minima/maxima.
- 2. Where is f increasing / decreasing?
- 3. Where is f concave up/down?
- 4. where are the points of inflection?
- 5. What is the global minimum / maximum of f on [1.5, 4]?

Problem 9: Let f(x) be a differentiable function on \mathbb{R} . Given that f''(x) = 12x + 2, f(0) = 1, and f(1) = 3, find f.