A Paper of Interest,
or What do Credit Cards Have to Do with Natural Logs?

by Roman Kogan

The subject of loans and monthly payments is not interesting only if there is no interest on the loan, or if
the interest is simple (you pay back a fixed percentage of what you loan). Neither of these cases is realistic;
in the real world, the interest is compounded, so you end up paying interest on interest. This is bad for

our pockets, but good for discussing mathematics behind it.

1 Don’t worry, we’ll be discrete

Often, the interest is broken up into even parts and applied at regular time intervals. This is known as

discrete compounding.

For a common scenario, consider a loan of P dollars over N years with APR (annual percentage rate) r,
with interest accrued monthly. This means that without any payments, the loan will increase by a factor

of (14 r/12) each month: we take 1/12 of the yearly interest and apply it every month.

As a practical example, suppose you have a credit card with 24% APR (not uncommon for student cards),
so 7 = 0.24, and you have a balance of $1000 in the beginning of the year. Applying r/12 = 2% = 0.02
interest each month means that if you don’t make any payments and there are no extra fees, in the end of

the year you will owe

$1000 - (1 +0.02) - (14 0.02) - ... (1 +0.02) = $1000 - (1 +0.02)"
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= $1268.24 (rounded to a cent),

which is greater than $1240 you would expect to pay if the interest was accrued annually. Side note: yes,

it’s actually written in small font in the credit card agreement.

2 Curiouser and Curiouser: Continuous Compounding

From the previous section you saw that applying the interest to your debt at small even intervals allows the

bank to increase your debt due to compounding (compared to accruing the interest once per year).
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You might be asking: how much can the bank gain in this way, while keeping the APR fixed? It seems
like accruing the interest more often benefits the bank. What if the interest was accrued every day? Every

hour? Every second?

The bad news is that the more periods there are, the more you end up paying. More on that later, but
here is a tabulation of debt on a loan of $1000 at 24% APR after one year for various numbers of periods

(rounded to a dollar), assuming no payments are made:

# periods | Debt
1| $1240
2 | $1254
6 | $1265
12 | $1268
24 | $1269
100 | $1270
1000 | $1271
10000 | $1271

The good news is that there is a limit to the madness. For example, the table above suggests that the debt
won’t increase above $1272 no matter how often the interest is applied. This is why banks often settle for

12 periods per year. Our goal now is to figure out what exactly is going on here.

To start, let’s see what happens in the absence of payments (or, if you reverse the scenario, in absence of
withdrawals from a savings account). If r is the interest rate, and n is the number of compounding periods

per year, the interest accrued after each period is (1 + %), and the total amount after 1 year is
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To proceed further, we need to expand (1 + r/n)". Recall' the binomial coefficients formula:

I+x)"=1+ (?)x—i— (Z)xZ—f— (g)x2—l—...+ (Z)x", where

ny\ n! n-n—1)-n—2)-...-(n—k+1)
(J"mm—kﬂ_ k-(k—1)-(k—2)...3-2-1

Applying this with x = r/n, we get:
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'Look up binomial coefficients in Wikipedia if you have trouble recalling what they are about!




This is a polynomial in r. Let ¢ be the coefficient of 7* in P,/P. Then

Po/P=14cir+cor®+ ...+ cpr'™
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We can extract a lot of information from this expression. First, notice that (1 — ¢/n), withn =1,2,3,.. .,
is an increasing sequence for all ¢ > 0. Since ¢ is a product of such terms and 1/k!, it follows that ¢
increases as n increases. This means, P, increases as n increases, as it becomes a sum of larger and larger

terms. This formally proves our observations about P,.

But we also get an upper bound on P, /P (that is, a bound on how much the bank can make from increasing

the number of periods).

Notice that for ¢ > 0, 1 > (1—c¢/n) - obviously, and k! > 21 for k > 0 (a bit harder). Thus we have
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Substituting into P,/P =1+ 17 + ... + ¢,r", together with r = 1, we get
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That is, with a 100% APR, your debt will, at worst, triple yearly. That’s a relief!



Now to deal with other values of r, observe that

since we have shown that (14 1/n)" < 3 for all n.

To summarize, this shows that no matter how often the interest is compounded, the debt increases by at

most a factor of 3" each year.

More importantly, we demonstrated that P, /P is an increasing, bounded sequence for all values of r. It
is a fundamental property? of real numbers that such (increasing, bounded) sequences must have a least
upper bound. In calculus terms, this means that the sequence P,/P converges to a limit (that depends

onr). So,
lim P,/P = lim (1+ f) exists.
n
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This allows us to define a function

n—o0

O(r) = lim <1 - Z) ,
n
which measures the percentage of the initial debt amount you have to pay back after a year at APR equal

to r, assuming the interest was compounded infinitely often - that is, continuously.

To actually compute ®(r), we can simply plug large values of n into (14 7/n)". But there is a better way,

which also gives more insight. Recall that the coefficients in the polynomials P, /P were of the form

v (0) (3) - 05

But (1 —¢/n) — 1 as n — 00, 0 ¢ — 7 as n — 0o, and thus
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We know the sum on the right-hand side converges because ®(r) is well-defined. This gives another way

to compute ®(r) and approximate it. Cutting of the sum after a first few terms allows us to say that for

small r,
2

q)(r)z(l—{—r)—i—%.

2Unimaginatively, but aptly called the Least Upper Bound property
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That is, your effective interest rate is about r?/2 more than the nominal one.

But wait, there is more!® It turns out that ®(r) has a much shorter expression (although not necessarily

one that’s better for computation). The same trick we used to find a bound works with limits:

a(r) = tim (1+ %)n
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DRAY
= lim (<1 + —) ) by substituting N = n/r

N—oo N
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So, once you get ®(1) =1+ 1+ 1/21 +1/31 4 ..., you get ®(r) = ®(1)". Mathematicians found this so
useful, they decided to give the constant ®(1) a name. You might have seen it in the wild under the name
e, Euler’s constant, or the base of the natural logarithm. For the function ®(z), people write exp(z) or

simply e”.

And so the journey begins. There are many questions that can be asked: what does all of this have to do
with logarithms? Where else does the function exp(z) appear, and what other uses does it have? And so
on. There is enough questions to write a book on*. All these questions can not be answered here, even if

the margins were wider.

What can® be answered here is the question that brought us to this point: what should the monthly
payment be? To answer it, note that under continuous compounding, the interest accrued each month
is exp(r/12) (why?). Use this as a starting point, and compute the monthly payment for the example
r =24%, P =1000, N =1 (i.e. the debt of P = 1000 at 24% APR is paid off after 1 year).

As the tradition goes, the details are left as an exercise to the reader. The margins are all yours.

3If you call 1-800-GET-MATH within the next 20 minutes, you'll get ®(r) as a solution of a differential equation for free!
4Which some people did, e.g. ”“E: The Story of a Number”’ by Eli Maor
5...but would not.



