
Matlab 3 Background

General notes

This Matlab assignment is formatted as a function. You write all the code in the sub-
functions in the beginning on the file.
Then you test your code by un-commenting the test code in the second half of the file.
Note that you can’t put any code before the sub-functions: Matlab won’t run it. If your
sub-functions need extra definitions (besides the input), define it within the body of the
sub-function.
Note: if your console stops being responsive, your code might be stuck in a loop. Hit Ctrl+C
repeatedly to get it unstuck.

Problem 1: Binary Division

This problem requires you to implement root finding by binary division.
The input to the problem is a continous function f and an interval [a, b] such that the signs
of f(a) and f(b) are different (i.e. one is positive, and other is negative). The intermediate
value theorem tells you that there is a value x ∈ [a, b] such that f(x) = 0. We call such value
a root of f .
The algorithm proceeds by shrinking the interval [a, b] while keeping the root within its
bounds.
Specifically, let a0 = a, b0 = b. For n > 0, define

cn = (an + bn)/2,

so cn is the midpoint of the segment [an−1, bn−1].
If f(cn) = 0, we have found the root: x = cn! Otherwise, f(cn) is either positive or negative,
and we define:

an+1 =

{
cn, if an and cn have the same sign

an, otherwise

bn+1 =

{
cn, if bn and cn have the same sign

bn, otherwise

Try out some examples: pick a function, e.g. f(t) = t2 − 9 and consider the intervals
[a, b] = [0, 5], and [a, b] = [−5, 0]. What are a1, b1 going to be in these two cases?
The idea is that the sign of f remains the same at the endpoints of the intervals [an, bn]. If
it started out as positive at the left endpoint a0, it will remain positive at an for all n.
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This means that the signs of f(an) and f(bn) are different for all n. (This is called an
invariant of the algorithm).
This means that the root x is in [an, bn] for all n.
Since [an, bn] gets smaller and smaller (shrinks by a factor of 2 at each iteration), the mid-
points cn of the intervals [an, bn] converge to the root.
Stopping after a finite number of iterations gives an approximation of the root x.
In the problem, you are asked to write code that finds an approximate root x such that
|f(x)| < ε for a given ε. The pseudocode for the problem is the following:

input: f, a, b, epsilon

set c = (a+b)/2

set step_count = 0;

while( |f(c)| > epsilon)

set a = a_1

b = b_1

c = c_1

(according to formulas above).

increase step_count

end

return c, step_count

During the execution, the code will loop until a good enough approximation of the root is
found. The variables a, b, c will take values an, bn, cn for n = 1, 2, . . . - taking the next value
with each iteration. The variable stepcount will count the total number of times the code
looped.

Problem 2: Newton’s method

Newton’s method exploits the idea that the function is close to its linear approximation.
Given f : R− > R, we start looking for a zero of f (that is, x such that f(x) = 0) by
choosing a ”lucky guess” value x0. If f(x0) = 0, we are done.
Otherwise, we look at the slope of f at x0. Intuitively, the slope tells us in which direction
to look. If f(x0) is positive, and f ′(x0) > 0, that means that the function is increasing,
and we should look to the left of x0.
How far should we go? We just look at the tangent line, and go to its x-intercept - call it
x1. The slope of the tangent line (aka linear approximation of f) at x0 is f ′(x0). Now

slope =
rise

run
,

and since rise = f(x0),

run = x0 − x1 =
rise

slope
=
f(x0)

f ′(x0)
.

Therefore, our next value is x1 = x0 − f(x0)/f
′(x0); and in general,

xn+1 = xn −
f(xn)

f ′(xn)
.
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The pseudocode for the algorithm is the following:

input: f, x_0, epsilon

set x = x_0

set step_count = 0;

while( |f(x)| > epsilon)

set x = x - f(x)/f’(x)

increase step_count

end

return x, step_count

The variable x will take on values x0, x1, x2, x3, . . . as the code runs.
The sequence {xi} will always converge to the root if x0 was a ”lucky enough” guess - that
is, if it is close enough to the root (or if f is ”nice” enough). These terms can be made
precise; the set of ”lucky guesses” for a root r is called a basin of attraction of r (because
r ”attracts” the iterations that start in the basin). Calculation of the basin of attraction is
not trivial; the field of mathematics that studies such questions is called dynamics. The
set might have complicated properties, e.g. be a fractal.

Problems 1a, 2a: convergence analysis

There is a section that asks you to compare how many steps it takes to reach a given precision
with binary division and Newton’s method.
The pseudocode is as follows:

for n = 1:N

set epsilon = 1/2^N

[r, nsteps] = find_zero_with_given_method()

steps(n) = nsteps

end

plot([1:N], nsteps)

Note that in Matlab, you don’t need to initialize an array variable to write to it. For large
loops, pre-initializing will make code run faster. For instance, this code creates an empty
array, fills it with numbers 12, 22, . . . , 102, and plots [1..10] vs the squares:

sq = zeros(10,1); %10-by-1 array of zeros

for n = 1:10

sq(n) = n^2

end

plot([1:10], sq)

Problem 3: involute

As mentioned in the lab, the involute is a curve that has a an important practical application
- in the design of gear teeth.
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The goal of this problem is to make you figure out how to combine the techniques of numerical
differentiation and integration in one problem.
Suppose you are given a parametrized curve γ(t) = (x(t), y(t)) and a time t0. A point on
the involute starting from t0 is the endpoint of a string that has been wound around your
curve, and that you start to unwind from (x(t0), y(t0)).
In particular, at time t1, this is a point with coordinates iv(t1) = (ivx(t1), ivy(t1) such that:{

the segment from γ(t1) to iv(t1) is tangent to the curve γ(t) at time t = t1;

the length of this segment is the arclength of γ(t) from t = t0 to t = t1.

So, to compute that involute at t1, you are doing the following:

• compute L(t1), the arclength of γ from t = t0 to t = t1;

• compute x′(t) and y′(t) at t = t1;

• from x(t1), y(t1) move in the direction (−x′(t1),−y′(t1)) by distance L(t1).

(Note the negative sign in the direction: we are going backwards because as you move along
the curve, you leave the unwound rope behind you).
All these steps are not hard when you do it with discrete approximations. Here’s the pseu-
docode:

set t_step = something small

set t = [t_0: t_step : t_max]

set N = length(t)

set L = 0 %this variable will store length of the curve so far

set iv_x, iv_y = zeros(N,1) %N-by-1 arrays

for i = 2:N

%compute dx, dy

set dx = x(t(i)) - x(t(i-1))

%first, update length

dL = sqrt(dx^2 + dy^2)

L = L + dL

%we have all the data now

%the direction vector is (-dx, -dy), length is L

%..we can even use the segment function from the previous assignment

iv_x(i) = x(t(i)) - ... (figure out what)

iv_y(i) = y(t(i)) - ...

end

Problem 4: extra credit

The idea is that you can calculate the volume of an n-dimensional ball recursively.
We start with dimension 0. The beginning might seem a bit contrived, but see how the
pattern holds when the dimension increases.
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The 0-dimensional space is a point; the 0-dimensional unit ball is also just one point, so it’s
zero-dimensional ”volume” is V0 = 1.
It doesn’t depend on radius (there isn’t much space in dimension 0 anyway), so

V0(r) = 1 = 1 · r0.

Let’s move on to the next dimension! In dimension 1, the unit ball - the set of points distance
at most 1 from the origin - is the interval [−1, 1]. You know its length is 2, but it can also
be seen as the integral; the cross-sections of the interval are points, that is, zero-dimensional
disks, so

V1 =

∫ 1

−1
V0dt =

∫ 1

−1
1dt = 2.

The 1-dimensional disk of radius r is just the interval [−r, r], whose length is 2r. But this
can also be seen as a unit disk scaled up by r. In dimension 1, the volume scales linearly, so

V1(r) = V1 · r = 2r.

Things start getting interesting in dimensions 2 and up.
The 2-dimensional unit ball is the unit disk. Its cross-sections perpendicular to the diameter
are intervals, that is, one-dimensional disks. The radius at height t is

√
1− t2, so

V2 =

∫ 1

−1
V1(
√

1− t2)dt

=

∫ 1

−1
2
√

1− t2)dt = π.

The volume of the 2-dimensional ball of radius r is the volume of the unit ball scaled up by
r in two dimensions, so

V2(r) = V2 · r2 = πr2.

Moving on to dimension 3. The unit ball is, well, a ball; its cross-sections perpendicular to
the diameter are disks (that is, 2-dimensional balls). The radius at height t is still

√
1− t2

by the Pythagorean theorem, and so

V3 =

∫ 1

−1
V2(
√

1− t2dt

=

∫ 1

−1
π(
√

1− t2
2
dt

=

∫ 1

−1
π1− t2dt

= 2π(t− t3/3)
∣∣∣1
0

=
4

3
π.
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The volume scales proportionately to the cube of the radius in dimension 3, so

V3(r) = V3 · r3 =
4

3
πr3.

From here on, the integrals become complicated to do by hand (symbolically). But you can
write a MATLAB script to calculate Vn in terms of Vn−1 (just like we did above). Figure
out what the pattern is from the formulas, and write the code.
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