- 1. a sequence is an ordered infinite list (of real numbers, in this course), denoted $\{a_n\}_{n=n_0}^{\infty}$.
- 2. a *series* is a formal ordered sum of an infinite list of (real) numbers; a sequential formal sum of elements of a sequence, denoted $\sum_{n=n_0}^{\infty} a_n$.
- 3. the sequence of partial sums of a series $\sum_{k=1}^{\infty} a_k$ is the sequence $\{s_n\}$ whose n'th term is the sum of the first 1..n terms in the series:

$$s_n = \sum_{k=1}^n a_k = a_1 + a_2 + a_3 + \ldots + a_k$$

In other words, it is the sequence $a_1, a_1 + a_2, a_1 + a_2 + a_3, \ldots$ It can also be defined recursively: $s_1 = a_1, s_n = s_{n-1} + a_n$.

- 4. what it means for a *sequence* to converge: a sequence $\{a_n\}$ converges to L if any neighborhood of L contains all but a finite number of terms of the sequence. Compare this with the definition in your book!
- 5. what it means for a *series* to converge: the sequence of its partial sums converges.
- 6. Taylor series for function f(x) at c is the series

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(x-c)^k}{k!}$$

where $f^{(k)}(x)$ is the k'th derivative of f(x).

7. Taylor polynomial of degree k for f(x) is the polynomial

$$\sum_{k=0}^{k} \frac{f^{(k)}(x-c)^{k}}{k!},$$

which is simply the first k + 1 terms of the Taylor series. Notice that the sum above is finite.

- 8. the test for divergence is the following test: a series $\sum_{k=1}^{\infty} a_k$ diverges if $\lim_{k \to \infty} a_k \neq 0$.
- 9. alternating series test is the following test: a series $\sum_{k=1}^{\infty} (-1)^l a_k$ converges if all a_k are positive, and the sequence $\{a_k\}$ is monotone converging to 0.

10. comparison test: if $\sum_{k=1}^{\infty} a_k$ is divergent and $b_k > a_k > 0$, then $\sum_{k=1}^{\infty} b_k$ is divergent. Likewise, if $\sum_{k=1}^{\infty} a_k$ is convergent and $0 < b_k < a_k$, then $\sum_{k=1}^{\infty} b_k$ is convergent.