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Our result
Let Σ be the Seifert surface obtained from a knot diagram
D of L. Then

tb(L) + |r(L)| ≤ −χΣ

Proof sketch: the Seifet surface obtained with the algo-
rithm is homotopy-equivalent to a graph withV vertices,
corresponding to regions, endE edges, corresponding to
crossings. WriteE = n+ + n− as a sum of positive and
negative crossings. The inequality reduces to

2n− + min(U, D) ≤ −V,

whereU is number of upward cusps,D - number of down-
ward.

Observe that positive crossings may only occur at a top or
bottom of each oriented region. Hence each region must
be adjacent to a negative crossing or a cusp (up or down)
on its sides (no vertical tangencies). ThenV ≤ U + 2n−
andV ≤ D + 2n−, yielding the result.

Bennequin’s inequality

tb(L) + |r(L)| ≤ −χ(L)

Given a toplogical knotL, this inequality places an upper
bound ontb(L) for all Legendiran knots of the same topo-
logical knot type. Since any topological knot can be real-
ized as legendrian, highest value oftb(L) is a topological
knot invariant.

Seifert’s algorithm
Obtains a Seifert surface for a knot or a link

• orient the knot

• resolve the crossing according to the sign given by ori-
entation, obtaining a surface with many boundary com-
ponents

• join the components with strips twisted to crossing signs

Genus of a knot: there always exist a surface such that the
knot forms its boundary. The surface is not unique. One
can always get a new one by attaching handles, and thus
increasing genus; where genus is a measure of how many
”holes” the surface has.

The smallest possible genus for a knot,g(L), is a topolog-
ical knot invariant (that is very hard to compute).We thus
write Euler characteristic of the knotL asχ(L) = 1 − 2g.

Invariants
The two classical invariants of a Legendrian knotL are the
Thurston-Bennequin number,tb(L) and rotation number,
r(L).

tb(L) counts how many timesξstd twists aroundL. If you
make a strip that goes alongL and is tangent to the contact
planes alongL, thentb(L) counts the number of twists in
the strip.

We formally definetb(L) as the number of timesL′ inter-
sects the Seifert surface ofL (see below), whereL′ is a
push-off ofL in the z direction. This number measures
how many crossings one has to undo to unlinkL from
L′. It can be computed from oriented knot front diagram:
tb(L) = n+−n−− 1

2no. of cusps. In the equation,n+ and
n− denote the number of positive and negative crossings,
resp., as below:

One can always decreasetb(L) by adding more cusps and
preseving the topological knot type, but increasing is not
always possible.

If you see the space as the spiral staircase,r(L) measures
how many flightsL is tall. One can measure it from the
x− y projection (it is the rotation number of the curve), or
from the front projection (orient the knot, obtain difference
between the number of up- and down-going cusps).

These invariants only make sense for Legendrian knots,
and distinguish some different Legendrian knots of the same
topological type (e.g. the unknot above is nontrivial).

Knots
A mathematical knot knot is a knotted string in space whose ends are
welded together. Formally,

Definition 2 A knot is an embedding of the circle S1 into R
3.

Two knots are not thought to be the same if one can be obtained from
another by movement and stretching of the string without tearing or
making it cross itself.

Every knot has manyknot diagrams obtained by projecting the knot
on a plane so that the the crossings do not overlap. They look like
what you would see if you put the knot on a table. Here are several
diagrams of the same trefoil knot:

Definition 3 A Legendrian Knot is a knot in a contact structure whose
tangent vectors lie in corresponding contact planes.

Here is a Legendrian trefoil and its diagram:

Two Legendrian knots are considered the same if one can be obtained
from another by moving the string without tearing (but possibly with
stretching) so that it stays tangent to the contact planes at all times.

This is a stricter equivalence condition than the one for general knots,
and there exist different Legendrian knots that are the same topological
knot. Intuitively, one cannot undo kinks in a Legendrian knot because
the space it lives in is kniky.

Legendrian knots have special projections, called the front projection
(on thex − z plane, as seen above) and Lagrangian (on thex − y
plane). Because tangent vectors satisfy equationdz − ydx = 0, we
obtainy = dz/dx, which forces the front projection to have no vertical
tangencies, i.e. inξstd one has to spiral to go up.

There is no known algorithm that, given two knot diagrams, would tell
if they represent the same knot, so the problem of classifying knots is
open. That is, mathematicians can not generally tell if two knots are
distinct.

However, there are certain numbers, calledknot invariants, that one
can associate with the knot that do not change under the movement of
the knot without tearing. That is, they are functions that take knots as
input in gives the same value for knots that are equivalent. Knot invari-
ants can be generally computed from the diagram, and help tell knots
apart: knots with different values of the invariant must be different.

Contact Structures
ξstd, thestandard contact structure on the three-dimensional
space, is placing a plane spanned by{ ∂

∂y,
∂
∂z + y ∂

∂x} at ev-

ery point(x, y, z) of R3.

The slope of the planes only depends on they coordinate,
and this is how the planes look atz = 0:

Such continuously varying placement of planes is called a
plane distribution, and arises as a kernel of a differential
form.

Definition 1 ξstd is a plane distribution on R
3 given by a

kernel of a 1− form α = dz − ydx on R
3.

This is an example of atotally-non integrable plane distri-
bution: given any surface, the planes are almost nowhere
tangent to it.

For a distribution given byker α to have such property, it
must satisfy theFrobenius condition α ∧ dα 6= 0, which is
true forα = dz − ydx.

A generalcontact structure is any plane distribution that
satisfies this condition, and it relates toξstd as follows:

Theorem 1(Darboux): all contact structures are locally
diffeomorphic to ξstd.

That is, all contact structures locally look like the one in
the picture: space filled with spiral staircases.

Introduction
A contact structure on space is a way of placing planes at
each point. It is of interest to mathematicians and physi-
cists, and appears in works on classical mechanics and
control theory.

The question of classifying contact structures is closely re-
lated to the study of knotted curves in them. D. Bennequin
demonstrated the existence of different contact structures
on R

3 by demonstrating that for all knots in the standard
contact structure a certain inequality holds, and then ex-
hibiting a contact structure with a knot for which the in-
equality does not hold.

The inequality provides a fundamental relationship between
topological (i.e. invariant under non-tearing deformations)
and geometric properties of a knot in the standard contact
structure. Its proof is quite involved, so the goal of the
project was to attempt to utilize planar knot diagrams to
come up with a simpler proof.
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